Skip to main content
Log in

Prediction of the dynamic oscillation threshold in a clarinet model with a linearly increasing blowing pressure

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Reed instruments are modeled as self-sustained oscillators driven by the pressure inside the mouth of the musician. A set of nonlinear equations connects the control parameters (mouth pressure, lip force) to the system output, hereby considered as the mouthpiece pressure. Clarinets can then be studied as dynamical systems; their steady behavior being dictated uniquely by the values of the control parameters. Considering the resonator as a lossless straight cylinder is a dramatic yet common simplification that allows for simulations using nonlinear iterative maps.

This paper investigates analytically the effect of a linearly increasing blowing pressure on the behavior of this simplified clarinet model. When the control parameter varies, results from the so-called dynamic bifurcation theory are required to properly analyze the system. This study highlights the phenomenon of bifurcation delay and defines a new quantity, the dynamic oscillation threshold. A theoretical estimation of the dynamic oscillation threshold is proposed and compared with numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. In [2], the invariant curve is called adiabatic invariant manifold.

References

  1. Atig, M., Dalmont, J.P., Gilbert, J.: Saturation mechanism in clarinet-like instruments, the effect of the localised nonlinear losses. Appl. Acoust. 65(12), 1133–1154 (2004)

    Article  Google Scholar 

  2. Baesens, C.: Slow sweep through a period-doubling cascade: delayed bifurcations and renormalisation. Physica D 53, 319–375 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baesens, C.: Gevrey series and dynamic bifurcations for analytic slow-fast mappings. Nonlinearity 8, 179–201 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bender, C., Orszag, S.: Advanced Mathematical Methods for Scientists and Engineers. McGraw-Hill, New York (1987)

    Google Scholar 

  5. Bergeot, B., Vergez, C., Almeida, A., Gazengel, B.: Measurement of attack transients in a clarinet driven by a ramp-like varying pressure. In: 11ème Congrès Français d’Acoustique and 2012 Annual IOA Meeting, Nantes, France, April 23rd–27th 2012

    Google Scholar 

  6. Chaigne, A., Kergomard, J.: Instruments à anche. In: Acoustique des Instruments de Musique, pp. 400–468. Belin, Paris (2008). Chap. 9

    Google Scholar 

  7. Dalmont, J., Gilbert, J., Kergomard, J., Ollivier, S.: An analytical prediction of the oscillation and extinction thresholds of a clarinet. J. Acoust. Soc. Am. 118(5), 3294–3305 (2005)

    Article  Google Scholar 

  8. Feigenbaum, M.J.: The universal metric properties of nonlinear transformations. J. Stat. Phys. 21(6), 669–706 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ferrand, D., Vergez, C., Silva, F.: Seuils d’oscillation de la clarinette: validité de la représentation excitateur-résonateur. In: 10ème Congrès Français d’Acoustique, Lyon, France, April 12nd–16th 2010

    Google Scholar 

  10. Fruchard, A.: Canards et râteaux. Ann. Inst. Fourier 42(4), 825–855 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fruchard, A.: Sur l’équation aux différences affine du premier ordre unidimensionnelle. Ann. Inst. Fourier 46(1), 139–181 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fruchard, A., Schäfke, R.: Bifurcation delay and difference equations. Nonlinearity 16, 2199–2220 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fruchard, A., Schäfke, R.: Sur le retard à la bifurcation. In: International Conference in Honor of Claude Lobry (2007). http://intranet.inria.fr/international/arima/009/pdf/arima00925.pdf

    Google Scholar 

  14. Hirschberg, A.: Aero-acoustics of wind instruments. In: Hirschberg, A., Kergomard, J., Weinreich, G. (eds.) Mechanics of Musical Instruments. CISM Courses and Lectures, vol. 335, pp. 291–361. Springer, Berlin (1995). Chap. 7

    Google Scholar 

  15. Hirschberg, A., de Laar, R.W.A.V., Maurires, J.P., Wijnands, A.P.J., Dane, H.J., Kruijswijk, S.G., Houtsma, A.J.M.: A quasi-stationary model of air flow in the reed channel of single-reed woodwind instruments. Acustica 70, 146–154 (1990)

    Google Scholar 

  16. Kapral, R., Mandel, P.: Bifurcation structure of the nonautonomous quadratic map. Phys. Rev. A 32(2), 1076–1081 (1985)

    Article  Google Scholar 

  17. Kergomard, J.: Elementary considerations on reed-instrument oscillations. In: Hirschberg, A., Kergomard, J., Weinreich, G. (eds.) Mechanics of Musical Instruments. CISM Courses and Lectures, vol. 335, pp. 229–290. Springer, Berlin (1995). Chap. 6

    Google Scholar 

  18. Kergomard, J., Dalmont, J.P., Gilbert, J., Guillemain, P.: Period doubling on cylindrical reed instruments. In: Proceeding of the Joint Congress CFA/DAGA 04. Société Française d’Acoustique—Deutsche Gesellschaft für Akustik, pp. 113–114. Strasbourg, France (2004)

    Google Scholar 

  19. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory vol. 112, 3rd edn. p. 136. Springer, Berlin (2004). Chap. 4

    Book  MATH  Google Scholar 

  20. Maganza, C., Caussé, R., Laloë, F.: Bifurcations, period doublings and chaos in clarinet-like systems. Europhys. Lett. 1(6), 295 (1986)

    Article  Google Scholar 

  21. Mcintyre, M.E., Schumacher, R.T., Woodhouse, J.: On the oscillations of musical instruments. J. Acoust. Soc. Am. 74(5), 1325–1345 (1983)

    Article  Google Scholar 

  22. Ollivier, S., Dalmont, J.P., Kergomard, J.: Idealized models of reed woodwinds. Part 2: On the stability of two-step oscillations. Acta Acust. united Acust. Acta. Acust. Acust. 91, 166–179 (2005)

    Google Scholar 

  23. Taillard, P., Kergomard, J., Laloë, F.: Iterated maps for clarinet-like systems. Nonlinear Dyn. 62, 253–271 (2010)

    Article  MATH  Google Scholar 

  24. Tredicce, J.R., Lippi, G., Mandel, P., Charasse, B., Chevalier, A., Picqué, B.: Critical slowing down at a bifurcation. Am. J. Phys. 72(6), 799–809 (2004)

    Article  Google Scholar 

  25. Wilson, T., Beavers, G.: Operating modes of the clarinet. J. Acoust. Soc. Am. 56(2), 653–658 (1974)

    Article  Google Scholar 

Download references

Acknowledgements

We wish to thank Mr. Jean Kergomard for his valuable comments on the manuscript.

This work was done within the framework of the project SDNS-AIMV “Systèmes Dynamiques Non-Stationnaires—Application aux Instruments à Vent” financed by Agence Nationale de la Recherche (ANR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Bergeot.

Appendices

Appendix A: Table of notation

1.1 A.1 Physical variables

Symbol

Explanation

Unit

Z c

characteristic impedance

Pa s m−3

K s

static stiffness of the reed per unit area

Pa m−1

P M

static closing pressure of the reed

Pa

H

opening height of the reed channel at rest

m

U

flow created by the pressure imbalance between the mouth and the mouthpiece

m3 s−1

U r

flow created by the motion of the reed

m3 s−1

U in

flow at the entrance of the resonator

m3 s−1

U A

flow amplitude parameter

m3 s−1

P m

musician mouth pressure

Pa

P

pressure inside the mouthpiece

Pa

ΔP

pressure difference P m P

Pa

y

displacement of the tip of the reed

m

τ

round trip travel time of a wave along the resonator

s

1.2 A.2 Dimensionless variables

Symbol

Associated physical variable

γ

musician mouth pressure

ζ

flow amplitude parameter

u

flow at the entrance of the resonator

p

pressure inside the mouthpiece

r

reflexion function of the resonator

p +

outgoing wave

p

incoming wave

p +∗

nonoscillating static regime of p + (fixed points of the function G)

ϕ

invariant curve

w

difference between p + and ϕ

ϵ

increase rate of the parameter γ

γ st

static oscillation threshold

γ dt

dynamic oscillation threshold

\(\gamma_{\mathrm{dt}}^{\mathrm{th}}\)

theoretical estimation of the dynamic oscillation threshold

\(\gamma_{\mathrm{dt}}^{\mathrm{num}}\)

value of γ when the system begins to oscillate (calculated numerically)

1.3 A.3 Nonlinear characteristic of the embouchure

Function

Associated representation

Definition

F

{u;p}

u=F(p)

G

{p +;p }

p +=G(−p )

Appendix B: Invariant curve

The invariant curve ϕ(γ,ϵ) is invariant under the mapping (23a)–(23b), it therefore satisfies the following equation:

$$ \phi(\gamma,\epsilon)=G \bigl(\phi(\gamma-\epsilon,\epsilon),\gamma \bigr). $$
(40)

First of all, the invariant curve is expanded into a power series of ϵ and only the first-order is retained:

$$ \phi(\gamma,\epsilon) \approx \phi_0(\gamma)+\epsilon \phi_1(\gamma). $$
(41)

Secondly, the function G is linearized around the curve p +∗(γ) of the fixed points:

(42)

where

$$ \partial_x G (x,y )=\frac{\partial G(x,y)}{\partial x}. $$
(43)

Then, we make a Taylor expansion of ϕ(γϵ,ϵ):

(44)

Finally, neglecting the second-order terms in ϵ, Eq. (40) becomes:

(45)

To obtain the approximate analytical expression of the invariant cure ϕ, Eq. (45) is successively solved for the functions ϕ 0(γ) and ϕ 1(γ).

As expected, to order 0 we find

$$ \phi_0(\gamma)= p^{+*}(\gamma). $$
(46)

To order 1, we have to solve:

(47)

and, therefore,

$$ \phi_1(\gamma)=\frac{\partial p^{+*}(\gamma)}{\partial \gamma} \frac{\partial_x G (p^{+*}(\gamma),\gamma )}{\partial_x G (p^{+*}(\gamma),\gamma )-1}. $$
(48)

Finally, the expression of the invariant curve is

(49)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergeot, B., Almeida, A., Vergez, C. et al. Prediction of the dynamic oscillation threshold in a clarinet model with a linearly increasing blowing pressure. Nonlinear Dyn 73, 521–534 (2013). https://doi.org/10.1007/s11071-013-0806-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-0806-y

Keywords

Navigation