Nonlinear Dynamics

, Volume 73, Issue 1–2, pp 521–534 | Cite as

Prediction of the dynamic oscillation threshold in a clarinet model with a linearly increasing blowing pressure

Original Paper


Reed instruments are modeled as self-sustained oscillators driven by the pressure inside the mouth of the musician. A set of nonlinear equations connects the control parameters (mouth pressure, lip force) to the system output, hereby considered as the mouthpiece pressure. Clarinets can then be studied as dynamical systems; their steady behavior being dictated uniquely by the values of the control parameters. Considering the resonator as a lossless straight cylinder is a dramatic yet common simplification that allows for simulations using nonlinear iterative maps.

This paper investigates analytically the effect of a linearly increasing blowing pressure on the behavior of this simplified clarinet model. When the control parameter varies, results from the so-called dynamic bifurcation theory are required to properly analyze the system. This study highlights the phenomenon of bifurcation delay and defines a new quantity, the dynamic oscillation threshold. A theoretical estimation of the dynamic oscillation threshold is proposed and compared with numerical simulations.


Musical acoustics Clarinet-like instruments Iterated maps Dynamic bifurcation Bifurcation delay Transient processes 


  1. 1.
    Atig, M., Dalmont, J.P., Gilbert, J.: Saturation mechanism in clarinet-like instruments, the effect of the localised nonlinear losses. Appl. Acoust. 65(12), 1133–1154 (2004) CrossRefGoogle Scholar
  2. 2.
    Baesens, C.: Slow sweep through a period-doubling cascade: delayed bifurcations and renormalisation. Physica D 53, 319–375 (1991) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Baesens, C.: Gevrey series and dynamic bifurcations for analytic slow-fast mappings. Nonlinearity 8, 179–201 (1995) MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Bender, C., Orszag, S.: Advanced Mathematical Methods for Scientists and Engineers. McGraw-Hill, New York (1987) Google Scholar
  5. 5.
    Bergeot, B., Vergez, C., Almeida, A., Gazengel, B.: Measurement of attack transients in a clarinet driven by a ramp-like varying pressure. In: 11ème Congrès Français d’Acoustique and 2012 Annual IOA Meeting, Nantes, France, April 23rd–27th 2012 Google Scholar
  6. 6.
    Chaigne, A., Kergomard, J.: Instruments à anche. In: Acoustique des Instruments de Musique, pp. 400–468. Belin, Paris (2008). Chap. 9 Google Scholar
  7. 7.
    Dalmont, J., Gilbert, J., Kergomard, J., Ollivier, S.: An analytical prediction of the oscillation and extinction thresholds of a clarinet. J. Acoust. Soc. Am. 118(5), 3294–3305 (2005) CrossRefGoogle Scholar
  8. 8.
    Feigenbaum, M.J.: The universal metric properties of nonlinear transformations. J. Stat. Phys. 21(6), 669–706 (1979) MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Ferrand, D., Vergez, C., Silva, F.: Seuils d’oscillation de la clarinette: validité de la représentation excitateur-résonateur. In: 10ème Congrès Français d’Acoustique, Lyon, France, April 12nd–16th 2010 Google Scholar
  10. 10.
    Fruchard, A.: Canards et râteaux. Ann. Inst. Fourier 42(4), 825–855 (1992) MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Fruchard, A.: Sur l’équation aux différences affine du premier ordre unidimensionnelle. Ann. Inst. Fourier 46(1), 139–181 (1996) MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Fruchard, A., Schäfke, R.: Bifurcation delay and difference equations. Nonlinearity 16, 2199–2220 (2003) MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Fruchard, A., Schäfke, R.: Sur le retard à la bifurcation. In: International Conference in Honor of Claude Lobry (2007). Google Scholar
  14. 14.
    Hirschberg, A.: Aero-acoustics of wind instruments. In: Hirschberg, A., Kergomard, J., Weinreich, G. (eds.) Mechanics of Musical Instruments. CISM Courses and Lectures, vol. 335, pp. 291–361. Springer, Berlin (1995). Chap. 7 Google Scholar
  15. 15.
    Hirschberg, A., de Laar, R.W.A.V., Maurires, J.P., Wijnands, A.P.J., Dane, H.J., Kruijswijk, S.G., Houtsma, A.J.M.: A quasi-stationary model of air flow in the reed channel of single-reed woodwind instruments. Acustica 70, 146–154 (1990) Google Scholar
  16. 16.
    Kapral, R., Mandel, P.: Bifurcation structure of the nonautonomous quadratic map. Phys. Rev. A 32(2), 1076–1081 (1985) CrossRefGoogle Scholar
  17. 17.
    Kergomard, J.: Elementary considerations on reed-instrument oscillations. In: Hirschberg, A., Kergomard, J., Weinreich, G. (eds.) Mechanics of Musical Instruments. CISM Courses and Lectures, vol. 335, pp. 229–290. Springer, Berlin (1995). Chap. 6 Google Scholar
  18. 18.
    Kergomard, J., Dalmont, J.P., Gilbert, J., Guillemain, P.: Period doubling on cylindrical reed instruments. In: Proceeding of the Joint Congress CFA/DAGA 04. Société Française d’Acoustique—Deutsche Gesellschaft für Akustik, pp. 113–114. Strasbourg, France (2004) Google Scholar
  19. 19.
    Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory vol. 112, 3rd edn. p. 136. Springer, Berlin (2004). Chap. 4 MATHCrossRefGoogle Scholar
  20. 20.
    Maganza, C., Caussé, R., Laloë, F.: Bifurcations, period doublings and chaos in clarinet-like systems. Europhys. Lett. 1(6), 295 (1986) CrossRefGoogle Scholar
  21. 21.
    Mcintyre, M.E., Schumacher, R.T., Woodhouse, J.: On the oscillations of musical instruments. J. Acoust. Soc. Am. 74(5), 1325–1345 (1983) CrossRefGoogle Scholar
  22. 22.
    Ollivier, S., Dalmont, J.P., Kergomard, J.: Idealized models of reed woodwinds. Part 2: On the stability of two-step oscillations. Acta Acust. united Acust. Acta. Acust. Acust. 91, 166–179 (2005) Google Scholar
  23. 23.
    Taillard, P., Kergomard, J., Laloë, F.: Iterated maps for clarinet-like systems. Nonlinear Dyn. 62, 253–271 (2010) MATHCrossRefGoogle Scholar
  24. 24.
    Tredicce, J.R., Lippi, G., Mandel, P., Charasse, B., Chevalier, A., Picqué, B.: Critical slowing down at a bifurcation. Am. J. Phys. 72(6), 799–809 (2004) CrossRefGoogle Scholar
  25. 25.
    Wilson, T., Beavers, G.: Operating modes of the clarinet. J. Acoust. Soc. Am. 56(2), 653–658 (1974) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • B. Bergeot
    • 1
  • A. Almeida
    • 1
  • C. Vergez
    • 2
  • B. Gazengel
    • 1
  1. 1.Laboratoire d’Acoustique de l’Université du Maine (LAUM-CNRS UMR 6613)Le Mans Cedex 9France
  2. 2.Laboratoire de Mécanique et Acoustique (LMA-CNRS UPR7051)Marseille Cedex 20France

Personalised recommendations