Skip to main content
Log in

Fully resonant soliton interactions in the Whitham–Broer–Kaup system based on the double Wronskian solutions

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

With the aim of exploring whether the (1+1)-dimensional coupled nonlinear evolution equations admit abundant soliton interactions, like the cases in the Kadomtsev–Petviashvili II equation, we in this paper study the double Wronskian solutions to the Whitham–Broer–Kaup (WBK) system. We give the parametric condition for two double Wronskians to generate the non-singular, non-trivial and irreducible soliton solutions. Via the asymptotic analysis of two double Wronskians, we show that the soliton solutions of the WBK system is in general linearly combined of fully resonant (M,N)- and (M−1,N+1)-soliton configurations. It turns out that the WBK system can exhibit various complex soliton structures which are different pairwise combinations of elastic, confluent and divergent interactions. From a combinatorial viewpoint, we also explain that the asymptotic solitons of a [(M,N),(M−1,N+1)]-soliton solution are identified by a pair of Grassmannian permutations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kadomtsev, B.B., Petviashvili, V.I.: On the stability of solitary waves in weakly dispersing media. Sov. Phys. Dokl. 15, 539–541 (1970)

    MATH  Google Scholar 

  2. Sato, M.: Soliton equations as dynamical systems on an infinite dimensional Grassmannian manifold. RIMS Kokyuroku 439, 30–46 (1981)

    Google Scholar 

  3. Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  4. Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  5. Biondini, G., Kodama, Y.: On a family of solutions of the Kadomtsev–Petviashvili equation which also satisfy the Toda lattice hierarchy. J. Phys. A 36, 10519–10536 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Biondini, G., Chakravarty, S.: Soliton solutions of the Kadomtsev–Petviashvili II equation. J. Math. Phys. 47, 033514 (2006)

    Article  MathSciNet  Google Scholar 

  7. Chakravarty, S., Kodama, Y.: Classification of the soliton solutions of KPII. J. Phys. A 41, 275209 (2008)

    Article  MathSciNet  Google Scholar 

  8. Biondini, G.: Line soliton interactions of the Kadomtsev–Petviashvili equation. Phys. Rev. Lett. 99, 064103 (2007)

    Article  Google Scholar 

  9. Chakravarty, S., Kodama, Y.: Soliton solutions of the KP equation and application to shallow water waves. Stud. Appl. Math. 123, 83–151 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kodama, Y.: KP solitons in shallow water. J. Phys. A 43, 434004 (2010)

    Article  MathSciNet  Google Scholar 

  11. Kodama, Y., Williams, L.: KP solitons and total positivity for the Grassmannian (2011). arXiv:1106.0023v1

  12. Kodama, Y., Williams, L.: KP solitons, total positivity, and cluster algebras. Proc. Natl. Acad. Sci. USA 108, 8984–8989 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Freeman, N.C., Nimmo, J.J.C.: Soliton-solutions of the Korteweg–de Vries and Kadomtsev–Petviashvili equations: the Wronskian technique. Phys. Lett. A 95, 1–3 (1983)

    Article  MathSciNet  Google Scholar 

  14. Whitham, G.B.: Linear and Nonlinear Waves. Wiley-Interscience, New York (1974)

    MATH  Google Scholar 

  15. Ying, J.P.: Fission and fusion of solitons for the (1+1)-dimensional Kupershmidt equation. Commun. Theor. Phys. 35, 405–408 (2001)

    MATH  Google Scholar 

  16. Satsuma, J., Kajiwara, K., Matsukidaira, J., Hietarinta, J.: Solutions of the Broer–Kaup system through its trilinear form. J. Phys. Soc. Jpn. 61, 3096–3102 (1992)

    Article  Google Scholar 

  17. Li, Y.S., Ma, W.X., Zhang, J.E.: Darboux transformations of classical Boussinesq system and its new solutions. Phys. Lett. A 275, 60–66 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Li, Y.S., Zhang, J.E.: Darboux transformations of classical Boussinesq system and its multi-soliton solutions. Phys. Lett. A 284, 253–258 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lin, J., Xu, Y.S., Wu, F.M.: Evolution property of soliton solutions for the Whitham–Broer–Kaup equation and variant Boussinesq equation. Chin. Phys. 12, 1049–1053 (2003)

    Article  Google Scholar 

  20. Wang, L., Gao, Y.T., Gai, X.L., Sun, Z.Y.: Inelastic interactions and double Wronskian solutions for the Whitham–Broer–Kaup model in shallow water. Phys. Scr. 80, 065017 (2009)

    Article  Google Scholar 

  21. Lin, G.D., Gao, Y.T., Gai, X.L., Meng, D.X.: Extended double Wronskian solutions to the Whitham–Broer–Kaup equations in shallow water. Nonlinear Dyn. 64, 197–206 (2011)

    Article  MathSciNet  Google Scholar 

  22. Lin, G.D., Gao, Y.T., Wang, L., Meng, D.X., Yu, X.: Elastic-inelastic-interaction coexistence and double Wronskian solutions for the Whitham–Broer–Kaup shallow-water-wave model. Commun. Nonlinear Sci. Numer. Simul. 16, 3090–3096 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, H.Z., Tian, B., Li, L.L., Zhang, H.Q., Xu, T.: Darboux transformation and new solutions for the Whitham–Broer–Kaup equations. Phys. Scr. 78, 065001 (2008)

    Article  Google Scholar 

  24. Whitham, G.B.: Variational methods and applications to water waves. Proc. R. Soc. Lond. A 299, 6–25 (1967)

    Article  MATH  Google Scholar 

  25. Broer, L.J.: Approximate equations for long water waves. Appl. Sci. Res. 31, 377–395 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kaup, D.J.: A higher-order water-wave equation and the method for solving it. Prog. Theor. Phys. 54, 396–408 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kupershmidt, B.A.: Mathematics of dispersive water waves. Commun. Math. Phys. 99, 51–73 (1985)

    Article  MathSciNet  Google Scholar 

  28. Zhang, C., Tian, B., Meng, X.H., Lü, X., Cai, K.J., Geng, T.: Painlevé integrability and N-soliton solution for the Whitham–Broer–Kaup shallow water model using symbolic computation. Z. Naturforsch. 63a, 253–260 (2008)

    Google Scholar 

  29. Xie, F.D., Yan, Z.Y., Zhang, H.Q.: Explicit and exact traveling wave solutions of Whitham–Broer–Kaup shallow water equations. Phys. Lett. A 285, 76–80 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  30. Chen, Y., Wang, Q.: Multiple Riccati equations rational expansion method and complexiton solutions of the Whitham–Broer–Kaup equation. Phys. Lett. A 347, 215–227 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Yan, Z.Y., Zhang, H.Q.: New explicit solitary wave solutions and periodic wave solutions for Whitham–Broer–Kaup equation in shallow water. Phys. Lett. A 285, 355–362 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  32. Xu, T., Li, J., Zhang, H.Q., Zhang, Y.X., Yao, Z.Z., Tian, B.: New extension of the tanh-function method and application to the Whitham–Broer–Kaup shallow water model with symbolic computation. Phys. Lett. A 369, 458–463 (2007)

    Article  Google Scholar 

  33. Freeman, N.C., Nimmo, J.J.C.: Soliton solutions of the Korteweg–de Vries and Kadomtsev–Petviashvili equations: the Wronskian technique. Phys. Lett. A 95, 1–3 (1983)

    Article  MathSciNet  Google Scholar 

  34. Freeman, N.C.: Soliton solutions of nonlinear evolution equations. IMA J. Appl. Math. 32, 125–145 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ma, W.X., Li, C.X., He, J.S.: A second Wronskian formulation of the Boussinesq equation. Nonlinear Anal. 70, 4245–4258 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ma, W.X.: An application of the Casoratian technique to the 2D Toda lattice equation. Mod. Phys. Lett. B 22, 1815–1825 (2008)

    Article  MATH  Google Scholar 

  37. Chen, D.Y., Zhang, D.J., Bi, J.B.: New double Wronskian solutions of the AKNS equation. Sci. China Ser. A 51, 55–69 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  38. Matveev, V.B.: Generalized Wronskian formula for solutions of the KdV equations: first applications. Phys. Lett. A 166, 205–208 (1992)

    Article  MathSciNet  Google Scholar 

  39. Ma, W.X.: Complexiton solutions to the Korteweg–de Vries equation. Phys. Lett. A 301, 35–44 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  40. Ablowitz, M.J., Kaup, D.J., Newell, A.C., Segur, H.: The inverse scattering transform-Fourier analysis for nonlinear problems. Stud. Appl. Math. 53, 249–315 (1974)

    MathSciNet  Google Scholar 

  41. Postnikov, A.: Total positivity, Grassmannians, and networks. Preprint (2006). arXiv:math.CO/0609764

  42. Ma, W.X., Fan, E.G.: Linear superposition principle applying to Hirota bilinear equations. Comput. Math. Appl. 61, 950–959 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  43. Ma, W.X.: Generalized bilinear differential equations. Stud. Nonlinear Sci. 2, 140–144 (2011)

    Google Scholar 

Download references

Acknowledgements

TX would like to thank the beneficial direction of Professor Gino Biondini when staying in the State University of New York at Buffalo as a visiting scholar from 2008 to 2009. This work has been supported by the Science Foundation of China University of Petroleum, Beijing (Grant No. BJ-2011-04), by the Special Funds of the National Natural Science Foundation of China (Grant No. 11247267), and by the National Natural Science Foundation of China (Grant No. 11071257).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Xu.

Appendix: Proof of the equivalence relation between Conditions (16) and (17)

Appendix: Proof of the equivalence relation between Conditions (16) and (17)

We first show the necessity of Condition (17) for the satisfaction of Condition (16). If respectively taking \(\mathcal{I}_{1} = \{M+2,M+3,\ldots, L\} \cup \{k\}\), \(\mathcal{I}'_{1} = \{M+2, M+3,\ldots, L\}\cup \{k+1\}\) and \(\mathcal{I}_{2} = \{M, M+1\ldots,L \} \setminus\{ M+k \}\), \(\mathcal{I}'_{2} = \{M, M+1\ldots,L\}\setminus\{ M+k+1 \} \) for any k∈[N−1], from Condition (16) we can obtain the following conditions:

(30)
(31)

which together yield Condition (17).

We next prove the sufficiency of Condition (17) for the satisfaction of Condition (16). Suppose that

$$ \begin{array}{@{}l} \mathcal{I}\setminus \bigl(\mathcal{I}\cap \mathcal{I}'\bigr)= \{i_{k_1}, \ldots, i_{k_{N'} } \}, \\ \noalign {\vspace {5pt}} \mathcal{I}'\setminus \bigl(\mathcal{I}\cap \mathcal{I}'\bigr) = \bigl\{i'_{k_1}, \ldots, i'_{k_{N'} } \bigr\}, \end{array} $$
(32)

where k 1<⋯<k N and N′≤N. As \(\mathcal{I}\cup \mathcal{J}= \mathcal{I}'\cup \mathcal{J}'=[L]\) and \(\mathcal{I}\cap \mathcal{J}= \mathcal{I}'\cap \mathcal{J}'= \varnothing \), we then have

$$ \begin{array}{@{}l} \mathcal{J}\setminus \bigl(\mathcal{J}\cap \mathcal{J}'\bigr)= \bigl\{i'_{k_1}, \ldots, i'_{k_{N'}}\bigr\}, \\ \noalign {\vspace {5pt}} \mathcal{J}'\setminus \bigl(\mathcal{J}\cap \mathcal{J}'\bigr)= \{ i_{k_1}, \ldots, i_{k_{N'}}\}. \end{array} $$
(33)

Thus, the left-hand side of Condition (16) can be expressed as

(34)

On the other hand, Condition (17) implies that (−1)ji−1 a i a j b i b j ≤0 for any i,j∈[L]. Accordingly, the sign of the right-hand side of Eq. (34) is determined by

(35)

which implies that Condition (17) is satisfied.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, T., Zhang, Y. Fully resonant soliton interactions in the Whitham–Broer–Kaup system based on the double Wronskian solutions. Nonlinear Dyn 73, 485–498 (2013). https://doi.org/10.1007/s11071-013-0803-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-0803-1

Keywords

Navigation