Skip to main content
Log in

Selection of NARX models estimated using weighted least squares method via GIC-based method and l 1-norm regularization methods

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We investigate the model selection problem for nonlinear autoregressive with exogenous variables models estimated using the weighted least squares (WLS) method. Because WLS changes the statistical property of data under study and violates the assumptions imposed on the well-developed model evaluation and selection methods (e.g. Akaike’s information criterion, Schwarz’s Bayesian information criterion, and the error reduction ratio based methods), therefore, new approaches should be investigated. In this research, an information criterion based method and two l 1-norm regularization methods are taken into consideration: (a) in the former method, for models estimated using WLS, we first derive an information criterion in terms of the generalized information criterion (GIC, proposed by Konishi and Kitagawa in Biometrica 83(4):875–890, 1996), which is a theoretical framework for the analysis and extension of information criteria via a statistical functional approach. Then we develop a robust selection procedure by combining the GIC-based forward stepwise method with Subsampling; (b) in the latter two methods, we employ the l 1-norm regularization methods, including Lasso and adaptive Lasso, to select models estimated with WLS. Finally, a numerical example is given to test and compare the performance of the three methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Rugh, W.: Nonlinear System Theory. John Hopkins Univ. Press, London (1981)

    MATH  Google Scholar 

  2. Bai, E.: A blind approach to the Hammerstein–Wiener model identification. Automatica 38(6), 967–979 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Hagenblad, A., Ljung, L., Wills, A.: Maximum likelihood identification of wiener models. Automatica 44(11), 2697–2705 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Liu, Y., Bai, E.: Iterative identification of Hammerstein systems. Automatica 43(2), 346–354 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Paduart, J., Lauwers, L., Swevers, J., Smolders, K., Schoukens, J., Pintelon, R.: Identification of nonlinear systems using polynomial nonlinear state space models. Automatica 46(4), 647–656 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, S., Billings, S.A., Cowan, C.F.N., Grant, P.M.: Practical identification of NARMAX models using radial basis functions. Int. J. Control 52(6), 1327–1350 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chiras, N., Evans, C., Rees, D.: Nonlinear gas turbine modeling using NARMAX structures. IEEE Trans. Instrum. Meas. 50(4), 893–898 (2001)

    Article  Google Scholar 

  8. Leontaritis, I.J., Billings, S.A.: Input–output parametric models for non-linear systems—Part I: deterministic non-linear systems. Int. J. Control 41(2), 303–328 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, S., Wang, X.X., Harris, C.J.: NARX-based nonlinear system identification using orthogonal least squares basis hunting. IEEE Trans. Control Syst. Technol. 16(1), 78–84 (2008)

    Article  Google Scholar 

  10. De Nicolao, G., Ferrari Trecate, G.: Consistent identification of NARX models via regularization networks. IEEE Trans. Autom. Control 44(11), 2045–2049 (1999)

    Article  MATH  Google Scholar 

  11. Kyoung, K.A., Ho, P.H.A.: Inverse double NARX fuzzy modeling for system identification. IEEE/ASME Trans. Mechatron. 15(1), 136–148 (2010)

    Article  Google Scholar 

  12. Wei, H.L., Billings, S.A.: A unified wavelet-based modelling framework for non-linear system identification: the WANARX. Int. J. Control 77(4), 351–366 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Wei, H.L., Billings, S.A.: Improved model identification for non-linear systems using a random subsampling and multifold modelling (RSMM) approach. Int. J. Control 82(1), 27–42 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Wei, H.L., Billings, S.A.: Improved parameter estimates for non-linear dynamical models using a bootstrap method. Int. J. Control 82(11), 1991–2001 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Billings, S.A., Wei, H.L.: A new class of wavelet networks for nonlinear system identification. IEEE Trans. Neural Netw. 16(4), 862–874 (2005)

    Article  Google Scholar 

  16. Billings, S.A., Wei, H.L.: The wavelet-NARMAX representation: a hybrid model structure combining polynomial models with multiresolution wavelet decompositions. Int. J. Syst. Sci. 36(3), 137–152 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Piroddi, L., Spinelli, W.: An identification algorithm for polynomial NARX models based on simulation error minimization. Int. J. Control 76(17), 1767–1781

  18. Sjöberg, J., Zhang, Q., Ljung, L., Benveniste, A., Deylon, B., Glorennec, P.Y., Hjalmarsson, H., Juditsky, A.: Non-linear black-box modelling in system identification: a unified overview. Automatica 31(12), 1691–1724 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Akaike, H.: A new look at the statistical model identification. IEEE Trans. Autom. Control 19(6), 716–723 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  20. Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6(2), 461–464 (1978)

    Article  MATH  Google Scholar 

  21. Billings, S.A., Chen, S., Korenberg, M.J.: Identification of MIMO non-linear system using a forward-regression orthogonal estimator. Int. J. Control 49(6), 2157–2189 (1989)

    MathSciNet  MATH  Google Scholar 

  22. Bai, E.: A random least-trimmed-squares identification algorithm. Automatica 39(9), 1651–1659 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ljung, L.: System Identification: Theory for the User, 2nd edn. Prentice-Hall, New York (1999)

    Google Scholar 

  24. Konishi, S., Kitagawa, G.: Generalised information criteria in model selection. Biometrika 83(4), 875–890 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  25. Konishi, S., Kitagawa, G.: Information Criteria and Statistical Modeling. Springer, New York (2008)

    Book  MATH  Google Scholar 

  26. Taniguchi, M., Hirukawa, J.: Generalized information criterion. J. Time Ser. Anal. 33(2), 286–297 (2012)

    Article  MathSciNet  Google Scholar 

  27. Nishii, R.: Asymptotic properties of criteria for selection of variables in multiple regression. Ann. Stat. 12(2), 758–765 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  28. Qin, N., Nishii, R.: Selection of ARX models estimated by the penalized weighted least squares method. Bull. Inform. Cybern. 42, 35–43 (2010)

    MathSciNet  MATH  Google Scholar 

  29. Politis, D.N., Romano, J.P.: Large sample confidence regions based on subsamples under minimal assumptions. Ann. Stat. 22(4), 2031–2050 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  30. Tibshirani, R.: Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. B 58(1), 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  31. Zou, H.: The adaptive Lasso and its Oracle properties. J. Am. Stat. Assoc. 101(476), 1418–1429 (2006)

    Article  MATH  Google Scholar 

  32. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning—Data Mining Inference, and Prediction, 2nd edn. Springer, New York (2009)

    MATH  Google Scholar 

  33. Li, K., Peng, J.X., Bai, E.: A two-stage algorithm for identification of nonlinear dynamic systems. Automatica 42(7), 1189–1197 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. Garatti, S., Bitead, R.R.: On resampling and uncertainty estimation in linear system identification. Automatica 46(55), 785–795 (2010)

    Article  MATH  Google Scholar 

  35. Efron, B., Hastie, T., Johnstone, I., Tibshirni, R.: Least angle regression. Ann. Stat. 32(2), 407–499 (2004)

    Article  MATH  Google Scholar 

  36. Fu, U.: Penalized regressions: the bridge versus the Lasso. J. Comput. Graph. Stat. 7(3), 397–416 (1998)

    Google Scholar 

  37. Wang, H., Li, G., Tsai, C.L.: Regression coefficient and autoregressive order shrinkage and selection via LASSO. J. R. Stat. Soc. B 69(1), 63–78 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to express their deepest gratitude to the two reviewers for their constructive comments and kind suggestions. We also thank Professor Wakayama, who is the director of Institute of Mathematics for Industry at Kyushu University, for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pan Qin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, P., Nishii, R. & Yang, ZJ. Selection of NARX models estimated using weighted least squares method via GIC-based method and l 1-norm regularization methods. Nonlinear Dyn 70, 1831–1846 (2012). https://doi.org/10.1007/s11071-012-0576-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-012-0576-y

Keywords

Navigation