Skip to main content
Log in

Robust estimation and variable selection in heteroscedastic regression model using least favorable distribution

  • Original paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

The assumption of equal variances is not always appropriate and different approaches for modelling variance heterogeneity have been widely studied in the literature. One of these approaches is joint location and scale model defined with the idea that both the location and the scale depend on explanatory variables through parametric linear models. Because the joint location and scale model includes two models, it does not deal well with a large number of irrelevant variables. Therefore, determining the variables that are important for the location and the scale is as important as estimating the parameters of these models. From this point of view, a combine robust estimation and variable selection method is proposed to simultaneously estimate the parameters and select the important variables. This is done using the least favorable distribution and least absolute shrinkage and selection operator method. Under appropriate conditions, we study the consistency, asymptotic distribution and the sparsity property of the proposed robust estimator. Simulation studies and a real data example are provided to demonstrate the advantages of the proposed method over existing methods in literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aitkin M (1987) Modelling variance heterogeneity in normal regression using GLIM. J R Stat Soc Ser C (Appl Stat) 36(3):332–339

    Google Scholar 

  • Antoniadis A, Gijbels I, Lambert-Lacroix S, Poggi JM (2016) Joint estimation and variable selection for mean and dispersion in proper dispersion models. Electron J Stat 10:1630–1676

    Article  MathSciNet  MATH  Google Scholar 

  • Arslan O (2012) Weighted LAD-LASSO method for robust parameter estimation and variable selection in regression. Comput Stat Data Anal 56:1952–1965

    Article  MathSciNet  MATH  Google Scholar 

  • Arslan O (2016) Penalized MM regression estimation with Lγ penalty: a robust version of bridge regression. Statistics 50(6):1236–1260

    Article  MathSciNet  MATH  Google Scholar 

  • Breusch TS, Pagan AR (1979) A simple test for heteroskedasticity and random coefficient variation. Econometrica 47(5):1287–1294

    Article  MathSciNet  MATH  Google Scholar 

  • Caner M (2009) LASSO-type GMM estimator. Econom Theory 25:270–290

    Article  MathSciNet  MATH  Google Scholar 

  • Cox DR, Hinkley DV (1974) Theoretical statistics, vol 1. Chapman and Hall, London

    Book  MATH  Google Scholar 

  • Efron B, Hastie T, Johnstone I, Tibshirani R (2004) Least angle regression (with discussion). Ann Stat 32:407–499

    Article  MATH  Google Scholar 

  • Fan JQ, Li R (2001) Variable selection via nonconcave penalized likelihood and its oracle properties J. Am Stat Assoc 96:1348–1360

    Article  MathSciNet  MATH  Google Scholar 

  • Frank IE, Friedman JH (1993) A statistical view of some chemometrics regression tools. Technometrics 35:109–135

    Article  MATH  Google Scholar 

  • Hampel FR, Ronchetti EM, Rousseeuw PJ, Stahel WA (1986) Robust statistics: the approach based on influence functions. Wiley, New York

    MATH  Google Scholar 

  • Harvey AC (1976) Estimating regression models with multiplicative heteroscedasticity. Econometrica 44:460–465

    Article  MathSciNet  MATH  Google Scholar 

  • Huber PJ (1964) Robust estimation of a location parameter. Ann Math Stat 35(1):73–101

    Article  MathSciNet  MATH  Google Scholar 

  • Huber PJ, Ronchetti EM (2009) Robust statistics, vol 2. Wiley, New York

    Book  MATH  Google Scholar 

  • Knight K, Fu W (2000) Asymptotics for Lasso-type estimators. Ann Stat 28(5):1356–1378

    MathSciNet  MATH  Google Scholar 

  • Li G, Peng H, Zhu L (2011) Nonconcave penalized M-estimation with a diverging number of parameters. Stat Sin 21:391–419

    MathSciNet  MATH  Google Scholar 

  • Li HQ, Wu LC, Yi JY (2016) A skew-normal mixture of joint location, scale and skewness models. Appl Math J Chin Univ 31(3):283–295

    Article  MathSciNet  MATH  Google Scholar 

  • Li H, Wu L, Ma T (2017) Variable selection in joint location, scale and skewness models of the skew-normal distribution. J Syst Sci Compl 30:694–709

    Article  MathSciNet  MATH  Google Scholar 

  • Newey WK, McFadden D (1994) Large sample estimation and hypothesis testing. In: Engle RF, McFadden DL (eds) Handbook of econometrics, vol 4. Elsevier, Amsterdam, pp 2111–2245

    Google Scholar 

  • Owen AB (2007) A robust hybrid of lasso and ridge regression. Contemp Math 443(7):59–72

    Article  MathSciNet  MATH  Google Scholar 

  • Park RE (1966) Estimation with heteroscedastic error terms. Econometrica 34(4):888

    Article  Google Scholar 

  • Rosset S, Zhu J (2004) Discussion of “least angle regression”, by B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Ann Stat 32:469–475

    Google Scholar 

  • R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

  • Taylor JT, Verbyla AP (2004) Joint modelling of location and scale parameters of the t distribution. Stat Model 4:91–112

    Article  MathSciNet  MATH  Google Scholar 

  • Tibshirani R (1996) Regression shrinkage and selection via the LASSO. J R Stat Soc B 58:267–288

    MathSciNet  MATH  Google Scholar 

  • Verbyla AP (1993) Variance heterogeneity: residual maximum likelihood and diagnostics. J R Stat Soc B 52:493–508

    MathSciNet  MATH  Google Scholar 

  • Wang L, Li R (2009) Weighted Wilcoxon-type smoothly clipped absolute deviation method. Biometr J Int Biometr Soc 65(2):564–571

    MathSciNet  MATH  Google Scholar 

  • Wang H, Li G, Jiang G (2006) Robust regression shrinkage and consistent variable selection via the lad-lasso. J Bus Econ Stat 11:1–6

    Google Scholar 

  • Wang X, Jiang Y, Huang M, Zhang H (2013) Robust variable selection with exponential squared loss. J Am Stat Assoc 108(502):632–643

    Article  MathSciNet  MATH  Google Scholar 

  • Wu LC (2014) Variable selection in joint location and scale models of the skew-t-normal distribution. Commun Stat Simul Comput 43(3):615–630

    Article  MathSciNet  MATH  Google Scholar 

  • Wu LC, Li HQ (2012) Variable selection for joint mean and dispersion models of the inverse Gaussian distribution. Metrika 75:795–808

    Article  MathSciNet  MATH  Google Scholar 

  • Wu LC, Zhang ZZ, Xu DK (2012) Variable selection in joint mean and variance models of Box Cox transformation. J Appl Stat 39(12):2543–2555

    Article  MathSciNet  MATH  Google Scholar 

  • Wu LC, Zhang ZZ, Xu DK (2013) Variable selection in joint location and scale models of the skew-normal distribution. J Stat Comput Simul 83:1266–1278

    Article  MathSciNet  MATH  Google Scholar 

  • Wu LC, Tian GL, Zhang YQ, Ma T (2017) Variable selection in joint location, scale and skewness models with a skew-t-normal distribution. Stat Interface 10(2):217–227

    Article  MathSciNet  MATH  Google Scholar 

  • Zheng Q, Gallagher C, Kulasekera KB (2013) Adaptive penalized quantile regression for high dimensional data. J Stat Plan Inference 143(6):1029–1038

    Article  MathSciNet  MATH  Google Scholar 

  • Zheng Q, Peng L, He X (2015) Globally adaptive quantile regression with ultra-high dimensional data. Ann Stat 43(5):2225–2258

    Article  MathSciNet  MATH  Google Scholar 

  • Zheng Q, Gallagher C, Kulasekera KB (2017) Robust adaptive Lasso for variable selection. Commun Stat Theory Methods 46(9):4642–4659

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous referees, the editor and the associate editor for their careful reading and suggestions of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeşim Güney.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Theorem 1

First, we have to show that \({Z}_{n}\left({\varvec{\theta}}\right)\) converges uniformly in probability to \(Z\left({\varvec{\theta}}\right)\) given in (26), then \({\widehat{{\varvec{\theta}}}}_{n}\) is uniformly bounded in probability.

At first, we show that

$$\underset{{\varvec{\theta}}\in\Theta }{\mathrm{sup}}\left|{Z}_{n}\left({\varvec{\theta}}\right)-Z\left({\varvec{\theta}}\right)\right|\to 0$$

in probability. Since the third term in \({Z}_{n}\left({\varvec{\theta}}\right)\) is not stochastic and the parameter space is compact (A4), it is sufficient to show that \(\frac{1}{2n}\sum_{i=1}^{n}{{\varvec{z}}}_{{\varvec{i}}}^{T}{\varvec{\gamma}}+\frac{1}{n}\sum_{i=1}^{n}\rho \left(\frac{{y}_{i}-{{\varvec{x}}}_{{\varvec{i}}}^{T}{\varvec{\upbeta}}}{{e}^{{{\varvec{z}}}_{{\varvec{i}}}^{T}{\varvec{\gamma}}/2}}\right)\) converges uniformly in probability to \({l}\left({\varvec{\theta}}\right)\) to show that \({Z}_{n}\left({\varvec{\theta}}\right)\) converges uniformly in probability to \(Z\left({\varvec{\theta}}\right)\) (Arslan 2016).

\(\rho \) function given in (9) is continuous (A4). Furthermore \(\mathrm{sup}\rho \left(r;{\varvec{\theta}}\right)<\infty \), \(\rho \left(t\right)\le \underset{\theta \in\Theta }{\mathrm{sup}}\rho \left(r;{\varvec{\theta}}\right)\) and \(E\left[\underset{{\varvec{\theta}}\in\Theta }{\mathrm{sup}}\rho \left(r;{\varvec{\theta}}\right)\right]<\infty \) where \(r=\frac{y-{{\varvec{x}}}^{T}{\varvec{\upbeta}}}{{e}^{{{\varvec{z}}}^{{\varvec{T}}}{\varvec{\gamma}}/2}}\). Thus, we have that \(E\left[\rho \left(r;{\varvec{\theta}}\right)\right]\) is continuous and

$$\underset{\theta \in\Theta }{\mathrm{sup}}\left|\frac{1}{2n}\sum_{i=1}^{n}{{\varvec{z}}}_{{\varvec{i}}}^{T}{\varvec{\gamma}}+\frac{1}{n}\sum_{i=1}^{n}\rho \left(\frac{{y}_{i}-{{\varvec{x}}}_{{\varvec{i}}}^{T}{\varvec{\upbeta}}}{{e}^{{{\varvec{z}}}_{{\varvec{i}}}^{T}{\varvec{\gamma}}/2}}\right)-{l}\left({\varvec{\theta}}\right)\right|\to 0$$

in probability (Newey and McFadden 1994). This result combined with \({\lambda }_{n}/n\to 0\) implies that

$$\underset{\theta \in\Theta }{\mathrm{sup}}\left|{Z}_{n}\left({\varvec{\theta}}\right)-Z\left({\varvec{\theta}}\right)\right|\to 0$$

in probability. Further, since

$${Z}_{n}\left({\varvec{\theta}}\right)\ge \frac{1}{2n}\sum_{i=1}^{n}{{\varvec{z}}}_{{\varvec{i}}}^{T}{\varvec{\gamma}}+\frac{1}{n}\sum_{i=1}^{n}\rho \left(\frac{{y}_{i}-{{\varvec{x}}}_{{\varvec{i}}}^{T}{\varvec{\upbeta}}}{{e}^{{{\varvec{z}}}_{{\varvec{i}}}^{T}{\varvec{\gamma}}/2}}\right)$$

we have

$$\underset{{\varvec{\theta}}}{\mathrm{argmin}}\left(\frac{1}{2n}\sum_{i=1}^{n}{{\varvec{z}}}_{{\varvec{i}}}^{T}{\varvec{\gamma}}+\frac{1}{n}\sum_{i=1}^{n}\rho \left(\frac{{y}_{i}-{{\varvec{x}}}_{{\varvec{i}}}^{T}{\varvec{\upbeta}}}{{e}^{{{\varvec{z}}}_{{\varvec{i}}}^{T}{\varvec{\gamma}}/2}}\right)\right)={\widehat{{\varvec{\theta}}}}_{ML}={O}_{p}\left(1\right).$$

Then it follows that

$$\underset{{\varvec{\theta}}}{\mathrm{argmin}}{Z}_{n}\left({\varvec{\theta}}\right)={\widehat{{\varvec{\theta}}}}_{n}={O}_{p}\left(1\right).$$

Combining these results (the convergence in probability of \({Z}_{n}\) and \({\widehat{{\varvec{\theta}}}}_{n}\) is uniformly bounded) we obtain

$${\widehat{{\varvec{\theta}}}}_{n}=\underset{{\varvec{\theta}}}{\mathrm{argmin}}{Z}_{n}\left({\varvec{\theta}}\right)\to \underset{{\varvec{\theta}}}{\mathrm{argmin}}Z\left({\varvec{\theta}}\right).$$

Moreover, when \({\lambda }_{n}/n\to 0\) as \(n\to \infty \), \({Z}_{n}\left({\varvec{\theta}}\right)\) converges uniformly in probability to \({l}\left({\varvec{\theta}}\right)\) and, since \({l}\left({\varvec{\theta}}\right)\) has a unique minimum at \({{\varvec{\theta}}}_{0}\) (A2) we get \({\widehat{{\varvec{\theta}}}}_{n}\to {{\varvec{\theta}}}_{0}\) in probability which confirms the consistency of \({\widehat{{\varvec{\theta}}}}_{n}.\)

Proof of Theorem 2

Let us define \({Q}_{n}\left({\varvec{u}}\right)={\mathcal{L}}_{n}\left({{\varvec{\theta}}}_{0}+{n}^{-\frac{1}{2}}{\varvec{u}}\right)-{\mathcal{L}}_{n}\left({{\varvec{\theta}}}_{0}\right)\) with \({\varvec{u}}\in {\mathbb{R}}^{s}\). Obviously, \({Q}_{n}\left({\varvec{u}}\right)\) is minimized at \({\widehat{{\varvec{u}}}}_{n}=\sqrt{n}\left({\widehat{{\varvec{\theta}}}}_{n}-{{\varvec{\theta}}}_{0}\right)\) because \({\widehat{{\varvec{\theta}}}}_{n}\) minimizes \({\mathcal{L}}_{n}\left({\varvec{\theta}}\right)\). First, we need to show that

$${Q}_{n}\left({\varvec{u}}\right)\stackrel{D}{\to }Q\left({\varvec{u}}\right).$$

\({Q}_{n}\left({\varvec{u}}\right)\) can be rewritten as

$$ \begin{aligned} Q_{n} \left( {\varvec{u}} \right) & = h\left( {{\varvec{\theta}}_{0} + n^{{ - \frac{1}{2}}} {\varvec{u}}} \right) - h\left( {{\varvec{\theta}}_{0} } \right) + \lambda_{n} \mathop \sum \limits_{j = 1}^{s} \left| {\theta_{0j} + n^{{ - \frac{1}{2}}} {\varvec{u}}} \right| - \lambda_{n} \mathop \sum \limits_{j = 1}^{s} \left| {\theta_{0j} } \right| \\ & = \left[ {h\left( {{\varvec{\theta}}_{0} + n^{{ - \frac{1}{2}}} {\varvec{u}}} \right) - h\left( {{\varvec{\theta}}_{0} } \right)} \right] + \lambda_{n} \mathop \sum \limits_{j = 1}^{{s_{1} }} \left( {\left| {\theta_{0j} + n^{ - 1/2} {\varvec{u}}} \right| - \left| {\theta_{0j} } \right|} \right) \\ & \quad + \lambda_{n} \mathop \sum \limits_{{j = s_{1} + 1}}^{{s_{2} }} \left( {\left| {\theta_{0j} + n^{ - 1/2} {\varvec{u}}} \right| - \left| {\theta_{0j} } \right|} \right). \\ \end{aligned} $$

For the first part of above equation, using Taylor series expansion around \({\varvec{u}}=0\), we get

$$h\left({{\varvec{\theta}}}_{0}+{n}^{-\frac{1}{2}}{\varvec{u}}\right)-h\left({{\varvec{\theta}}}_{0}\right)=-{n}^{-\frac{1}{2}}{{\varvec{u}}}^{T} {h}^{^{\prime}}\left({{\varvec{\theta}}}_{0}\right)+\frac{1}{2}{n}^{-1}{{\varvec{u}}}^{T} {h}^{{^{\prime}}{^{\prime}}}\left({{\varvec{\theta}}}_{0}\right){\varvec{u}}.$$

Since \(\frac{1}{\sqrt{n}}{h}^{^{\prime}}\left({{\varvec{\theta}}}_{0}\right)\stackrel{D}{\to }{\varvec{W}}\) with \({\varvec{W}}\sim {N}_{s}\left(0,A\left({h}^{^{\prime}}\left({{\varvec{\theta}}}_{0}\right)\right)\right)\) and \(\frac{1}{n}{h}^{{^{\prime}}{^{\prime}}}\left({{\varvec{\theta}}}_{0}\right)\to B\left({h}^{^{\prime}}\left({{\varvec{\theta}}}_{0}\right)\right)\) where \(A\left({h}^{^{\prime}}\left({{\varvec{\theta}}}_{0}\right)\right)=E\left[{\left({h}^{^{\prime}}\left({{\varvec{\theta}}}_{0}\right)\right)}^{2}\right]\) and \(B\left({h}^{^{\prime}}\left({{\varvec{\theta}}}_{0}\right)\right)=E\left[{h}^{{^{\prime}}{^{\prime}}}\left({{\varvec{\theta}}}_{0}\right)\right]\), we obtain

$$h\left({{\varvec{\theta}}}_{0}+{n}^{-\frac{1}{2}}{\varvec{u}}\right)-h\left({{\varvec{\theta}}}_{0}\right) \stackrel{D}{\to } -{{\varvec{u}}}^{T} {\varvec{W}}+\frac{1}{2}{{\varvec{u}}}^{T} \left(B\left({h}^{^{\prime}}\left({{\varvec{\theta}}}_{0}\right)\right)\right){\varvec{u}}$$

(Arslan 2016).

Similar to Knight and Fu (2000) and Arslan (2016), we have

$$ \begin{aligned} & \lambda_{n} \mathop \sum \limits_{j = 1}^{s} \left( {\left| {\theta_{0j} + n^{{ - \frac{1}{2}}} {\varvec{u}}} \right| - \left| {\theta_{0j} } \right|} \right) = \frac{{\lambda_{n} }}{\sqrt n }\mathop \sum \limits_{j = 1}^{s} \left( {u_{j} sgn\left( {\theta_{0j} } \right)\left( {\theta_{0j} \ne 0} \right) + \left| {u_{j} } \right|I\left( {\theta_{0j} = 0} \right)} \right) \\ & \quad \to \frac{{\lambda_{0} }}{\sqrt n }\mathop \sum \limits_{j = 1}^{s} \left( {u_{j} sgn\left( {\theta_{0j} } \right)\left( {\theta_{0j} \ne 0} \right) + \left| {u_{j} } \right|I\left( {\theta_{0j} = 0} \right)} \right) \\ \end{aligned} $$

as \(n\to \infty \). Then, we obtain

$${Q}_{n}\left({\varvec{u}}\right)\stackrel{D}{\to }Q\left({\varvec{u}}\right)$$

as \(n\to \infty \). Since \(Q\left({\varvec{u}}\right)\) has a unique minimum and \({Q}_{n}\left({\varvec{u}}\right)\) can be approximated by a convex function, we finally have

$$\sqrt{n}\left({\widehat{{\varvec{\theta}}}}_{n}-{{\varvec{\theta}}}_{0}\right)=\underset{{\varvec{u}}}{\mathrm{argmin}}{Q}_{n}\left({\varvec{u}}\right)\stackrel{D}{\to }\underset{{\varvec{u}}}{\mathrm{argmin}}Q({\varvec{u}}).$$

Proof of Theorem 3

First, we prove that for any given \({{\varvec{\theta}}}^{({s}_{1})}\) satisfying \({{\varvec{\theta}}}^{({s}_{1})}-{{\varvec{\theta}}}_{0}^{({s}_{1})}=O\left({n}^{-1/2}\right)\) and any constant \(c > 0\), we have

$${\mathcal{L}}_{n}\left\{{\left({\left({{\varvec{\theta}}}^{({s}_{1})}\right)}^{T},{0}^{T}\right)}^{T}\right\}=\underset{\Vert {{\varvec{\theta}}}^{({s}_{2})}\Vert \le c{n}^{-1/2}}{\mathrm{min}}{\mathcal{L}}_{n}\left\{{\left({\left({{\varvec{\theta}}}^{({s}_{1})}\right)}^{T},{\left({{\varvec{\theta}}}^{({s}_{2})}\right)}^{T}\right)}^{T}\right\}.$$

Simple calculations lead to the following expression of the derivative of \(Q\left({\varvec{\theta}}\right)\).

$$\frac{\partial {\mathcal{L}}_{n}\left({\varvec{\theta}}\right)}{\partial {\theta }_{j}}=\frac{\partial h\left({\varvec{\theta}}\right)}{\partial {\theta }_{j}}+{\lambda }_{n}sgn\left({\theta }_{j}\right)$$

Then applying the Taylor’s expansion, for any \({\theta }_{j}\) \(\left(j={s}_{1}+1,{s}_{1}+2,\dots ,s\right)\) we obtain

$$\frac{\partial {\mathcal{L}}_{n}\left({\varvec{\theta}}\right)}{\partial {\theta }_{j}}=\frac{\partial h\left({{\varvec{\theta}}}_{0}\right)}{\partial {\theta }_{j}}+\sum_{k=1}^{s}\frac{{\partial }^{2}h\left({{\varvec{\theta}}}^{*}\right)}{\partial {\theta }_{j}\partial {\theta }_{k}}\left({\theta }_{k}-{\theta }_{0k}\right)+{\lambda }_{n}sgn\left({\theta }_{j}\right)$$

where \({{\varvec{\theta}}}^{*}\) is between \({\varvec{\theta}}\) and \({{\varvec{\theta}}}_{0}\). On the other hand, we know that (Fan and Li 2001)

$$ \begin{aligned} & \frac{1}{n}\frac{{\partial h\left( {{\varvec{\theta}}_{0} } \right)}}{{\partial \theta_{j} }} = O_{p} \left( {n^{ - 1/2} } \right), \\ & \frac{1}{n}\left\{ {\frac{{\partial^{2} h\left( {{\varvec{\theta}}_{0} } \right)}}{{\partial \theta_{j} \partial \theta_{k} }}} \right\} - E\left[ {\frac{{\partial^{2} h\left( {{\varvec{\theta}}_{0} } \right)}}{{\partial \theta_{j} \partial \theta_{k} }}} \right] = O_{p} \left( 1 \right). \\ \end{aligned} $$

According to Theorem 1, it is clear that \(\Vert {{\widehat{{\varvec{\theta}}}}_{n}-{\varvec{\theta}}}_{0}\Vert ={O}_{p}\left({n}^{-1/2}\right).\) Then, we obtain

$$\frac{\partial {\mathcal{L}}_{n}\left({\varvec{\theta}}\right)}{\partial {\theta }_{j}}={\lambda }_{n}\left\{-{\lambda }_{n}^{-1}{p}_{{\lambda }_{n}}^{^{\prime}}\left(\left|{\theta }_{j}\right|\right)+{O}_{p}\left({{\lambda }_{n}^{-1}n}^{-\frac{1}{2}}\right)\right\}={\lambda }_{n}\left\{-sgn\left({\theta }_{j}\right)+{O}_{p}\left({{\lambda }_{n}^{-1}n}^{-\frac{1}{2}}\right)\right\}.$$

While \({{\lambda }_{n}^{-1}n}^{-\frac{1}{2}}\to 0\) as \(n\to \infty ,\) the sign of the derivative is completely determined by that of \({\theta }_{j}.\)

Namely, we can ensure that

$$\left\{\begin{array}{ll}\frac{\partial {\mathcal{L}}_{n}\left({\varvec{\theta}}\right)}{\partial {\theta }_{j}}<0,&\quad for\, 0<{\theta }_{j}<c{n}^{-1/2}\\ \frac{\partial {\mathcal{L}}_{n}\left({\varvec{\theta}}\right)}{\partial {\theta }_{j}}>0,&\quad for\, -c{n}^{-1/2}<{\theta }_{j}<0.\end{array}\right.$$

Hence, with probability tending to 1, \({\mathcal{L}}_{n}\left({\varvec{\theta}}\right)\) achieve its minimum at \({\varvec{\theta}}={\left({\left({{\varvec{\theta}}}^{({s}_{1})}\right)}^{T},{0}^{T}\right)}^{T}.\) This completes the proof of Theorem 3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Güney, Y., Tuaç, Y., Özdemir, Ş. et al. Robust estimation and variable selection in heteroscedastic regression model using least favorable distribution. Comput Stat 36, 805–827 (2021). https://doi.org/10.1007/s00180-020-01036-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-020-01036-5

Keywords

Navigation