Skip to main content
Log in

Numerical solution of the regularized long wave equation using nonpolynomial splines

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we employ nonpolynomial spline (NPS) basis functions to obtain approximate solutions of the regularized long wave (RLW) equation. By considering suitable relevant parameters, it is shown that the local truncation error behaves O(k 2+h 2) with respect to the time and space discretization. Numerical stability of the method is investigated by using a linearized stability analysis. To illustrate the applicability and efficiency of the aforementioned basis, we compare obtained numerical results with other existing recent methods. Motion of single solitary wave and double and triple solitary waves, wave undulation, generation of solitary waves using the Maxwellian initial condition and conservation properties of mass, energy, and momentum of numerical solutions of the equation are dealt with.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdulloev, K.O., Bogolubsky, I.L., Markhankov, V.G.: One more example of inelastic soliton interaction. Phys. Lett. A 56, 427–428 (1976)

    Article  MathSciNet  Google Scholar 

  2. Islam, S.U., Haq, S., Ali, A.: A meshfree method for the numerical solution of the RLW equation. J. Comput. Appl. Math. 223, 997–1012 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bona, J.L., Bryant, P.J.: A mathematical model for long waves generated by wave makers in nonlinear dispersive systems. Proc. Camb. Philos. Soc. 73, 391–405 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  4. Mokhtari, R., Mohammadi, M.: Numerical solution of GRLW equation using Sinc-collocation method. Comput. Phys. Commun. 181, 1266–1274 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Mohammadi, M., Mokhtari, R.: Solving the generalized regularized long wave equation on the basis of a reproducing kernel space. J. Comput. Appl. Math. 235, 4003–4014 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Mokhtari, R., Torabi Ziaratgahi, S.: Numerical solution of RLW equation using integrated radial basis functions. Int. J. Appl. Comput. Math. 10, 428–448 (2011)

    MATH  Google Scholar 

  7. Griewanka, A., El-Danaf, T.S.: Efficient accurate numerical treatment of the modified Burgers’ equation. Appl. Anal. 88, 75–87 (2009)

    Article  MathSciNet  Google Scholar 

  8. El-Danaf, T.S., Ramadan, M.A., Abd-Alaal, F.E.I.: Numerical studies of the cubic non-linear Schrödinger equation. Nonlinear Dyn. (2011). doi:10.1007/s11071-011-0014-6

  9. Biswas, A.: Solitary waves for power-law regularized long-wave equation and R(m,n) equation. Nonlinear Dyn. 59, 423–426 (2010)

    Article  MATH  Google Scholar 

  10. Biswas, A., Kara, A.H.: Conservation laws for regularized long wave equation and R(m,n) equation. Adv. Sci. Lett. 4, 168–170 (2011)

    Article  Google Scholar 

  11. Mokhtari, R., Mohammadi, M.: New exact solutions to a class of coupled nonlinear PDEs. Int. J. Nonlinear Sci. Numer. Simul. 10, 779–796 (2009)

    Article  Google Scholar 

  12. Raslan, K.R.: The first integral method for solving some important nonlinear partial differential equations. Nonlinear Dyn. 53, 281–286 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dehghan, M., Shokri, A.: A numerical method for KdV equation using collocation and radial basis functions. Nonlinear Dyn. 50, 111–120 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mokhtari, R.: Exact solutions of the Harry-Dym equation. Commun. Theor. Phys. 55, 204–208 (2011)

    Article  MathSciNet  Google Scholar 

  15. Mokhtari, R., Samadi Toodar, A., Chegini, N.G.: Numerical simulation of coupled nonlinear Schrödinger equations using the generalized differential quadrature method. Chin. Phys. Lett. 28, 020202 (2011). doi:10.1088/0256-307X/28/2/020202

    Article  Google Scholar 

  16. Mokhtari, R., Samadi Toodar, A., Chegini, N.G.: Application of the generalized differential quadrature method in solving Burgers’ equations. Commun. Theor. Phys. 56, 1009–1015 (2011)

    Article  Google Scholar 

  17. Dag, I., Dogan, A., Saka, B.: B-spline collocation methods for numerical solutions of the RLW equation. Int. J. Comput. Math. 80, 743–757 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dag, I., Saka, B., Irk, D.: Galerkin method for the numerical solution of the RLW equation using quintic B-splines. J. Comput. Appl. Math. 190, 532–547 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Esen, A., Kutluay, S.: Application of a lumped Galerkin method to the regularized long wave equation. Appl. Math. Comput. 174, 833–845 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Korkmaz, A.: Numerical solutions of some nonlinear partial differential equations using differential quadrature method. Thesis of Master Degree, Eskişehir Osmangazi University, Eskişehir, Turkey (2006) (Unpublished)

  21. Korkmaz, A.: Numerical solutions of some one dimensional partial differential equations using B-spline differential quadrature methods. PhD. Dissertation, Eskişehir Osmangazi University, Eskişehir, Turkey (2010) (Unpublished)

  22. Korkmaz, A.: Numerical algorithms for solutions of Korteweg-de Vries equation. Numer. Methods Partial Differ. Equ. 26, 1504–1521 (2010)

    MathSciNet  MATH  Google Scholar 

  23. Korkmaz, A., Dag, I.: A differential quadrature algorithm for nonlinear Schrödinger equation. Nonlinear Dyn. 56, 69–83 (2009)

    Article  MATH  Google Scholar 

  24. Korkmaz, A., Dag, I.: A differential quadrature algorithm for simulations of nonlinear Schrödinger equation. Comput. Math. Appl. 56, 2222–2234 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Korkmaz, A., Dag, I.: Solitary wave simulations of complex modified Korteweg-de Vries equation using differential quadrature method. Comput. Phys. Commun. 180, 1516–1523 (2009)

    Article  MathSciNet  Google Scholar 

  26. Korkmaz, A., Dag, I.: Crank-Nicolson differential quadrature algorithms for the Kawahara equation. Chaos Solitons Fractals 42, 65–73 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Korkmaz, A., Dag, I., Saka, B.: Cosine expansion based differential quadrature (CDQ) algorithms for numerical solution of the RLW equation. Numer. Methods Partial Differ. Equ. 26, 544–560 (2010)

    MathSciNet  MATH  Google Scholar 

  28. Saka, B., Dag, I., Dogan, A.: Galerkin method for the numerical solution of the RLW equation using quadratic B-spline. Int. J. Comput. Math. 81, 727–739 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Saka, B., Dag, I.: A Collocation method for the numerical solution of the RLW equation using cubic B-spline basis. Arab. J. Sci. Eng. 30, 39–50 (2005)

    MathSciNet  Google Scholar 

  30. Rashidinia, J., Mohammadi, R.: Tension spline approach for the numerical solution of nonlinear Klein-Gordon equation. Comput. Phys. Commun. 181, 78–91 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Rashidinia, J., Mohammadi, R.: Numerical methods based on non-polynomial sextic spline for solution of variable coefficient fourth-order wave equations. Int. J. Comput. Methods Eng. Sci. Mech. 10, 266–276 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Jalilian, R.: Non-polynomial spline method for solving Bratu’s problem. Comput. Phys. Commun. 181, 1868–1872 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Mokhtari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chegini, N.G., Salaripanah, A., Mokhtari, R. et al. Numerical solution of the regularized long wave equation using nonpolynomial splines. Nonlinear Dyn 69, 459–471 (2012). https://doi.org/10.1007/s11071-011-0277-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-0277-y

Keywords

Navigation