Skip to main content
Log in

The chaotic dynamics of the social behavior selection networks in crowd simulation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper researches the nonlinear dynamics of the behavior selection networks (BSN) model by virtue of which we can understand the origin of flocking behaviors in social networks. To commentate the notion of BSN, this article introduces a social behavior selection model for evolutionary dynamics of behaviors in social networks that exhibits a rich set of emergent behaviors of evolution. For behavioral networks with different complex networks topology, we analyze the nonlinear dynamics including the chaotic dynamics by the numerical simulation tools. With changing the topological structure, the behavioral networks behave affluent dynamical phenomena. Lastly, we draw the conclusion and paste the prospection about the networks model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shendarkar, A., Vasudevan, K., Lee, S., Son, Y.J.: Crowd simulation for emergency response using BDI agent based on virtual reality. In: Perrone, L.F., Wieland, F.P., Liu, J., Lawson, B.G., Nicol, D.M., Fujimoto, R.M. (eds.) Proceedings of the 2006 Winter Simulation Conference, pp. 545–553. Institute of Electrical and Electronics Engineers, Piscataway, NJ (2006)

    Chapter  Google Scholar 

  2. Helbing, D., Farkas, I., Vicsek, T.: Simulating dynamical features of escape panic. Nature 407(28), 487–490 (2000)

    Article  Google Scholar 

  3. Musse, S.R., Thalmann, D.: Hierachical model for real time simulation of virtual human crowds. IEEE Trans. Vis. Comput. Graph. 7(2), 152–164 (2001)

    Article  Google Scholar 

  4. Hodgins, J., Brogan, D.: Group behaviors for systems with significant dynamics. Auton. Robots 4, 137–153 (1997)

    Article  Google Scholar 

  5. Bouvier, E., Guilloteau, P.: Crowd simulation in immersive space management. In: Proceedings of the Eurographics Workshop on Virtual Environments and Scientific Visualization’96, pp. 104–110. Springer, London (1996)

    Google Scholar 

  6. Braun, A., Musse, S.R., de Oliveira, L.P.L., Bodmann, B.E.J.: Modeling individual behaviors in crowd simulation. In: Computer Animation and Social Agents, 16th International Conference, pp. 143–148, New Brunswick, NJ (2003)

    Google Scholar 

  7. Luo, L., Zhou, S., Cai, W., Malcolm, Tian F., Wang, Y., Xiao, X., Chen, D.: Agent-based human behavior modeling for crowd simulation. Comput. Animat. Virtual Worlds 19(3–4), 271–281 (2008)

    Article  Google Scholar 

  8. Dogbéa, C.: On the numerical solutions of second order macroscopic models of pedestrian flows. Comput. Math. Appl. 56(7), 1884–1898 (2008)

    Article  MathSciNet  Google Scholar 

  9. Ivancevic, V.G., Reid, D.J., Aidman, E.V.: Crowd behavior dynamics: entropic path-integral model. Nonlinear Dyn. 59, 351–373 (2010)

    Article  MATH  Google Scholar 

  10. Le Bon, G.: The crowd: a study of the popular mind. Macmillan, New York (1946) (English translation of original French version in 1896)

    Google Scholar 

  11. Quek, H.Y., Tan, K.C., Abbass, H.A.: Evolutionary game theoretic approach for modeling civil violence. IEEE Trans. Evol. Comput. 13(4), 780–800 (2009)

    Article  Google Scholar 

  12. Berck, Richard A.: A gaming approach to crowd behavior. Am. Soc. Rev. 39, 355–373 (1974)

    Article  Google Scholar 

  13. Lychagin, V., Lychagina, O.: Finite dimensional dynamics for evolutionary equations. Nonlinear Dyn. 48, 29–48 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Watts, D.J., Strogatz, S.H.: Collective dynamics of “small-world” networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

  15. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  16. Szabó, G., Fáth, G.: Evolutionary games on graphs. Phys. Rep. 446, 97–216 (2007)

    Article  MathSciNet  Google Scholar 

  17. Olfati-Saber, R.: Evolutionary dynamics of behavior in Social networks. In: Proceedings of the 46th IEEE Conference on Dicision and Control, pp. 4051–4056, New Orleans, LA (2007)

    Chapter  Google Scholar 

  18. Yang, Y., Li, X., Rong, Z.: Assortative degree-mixing patterns inhibit behavioral diversity of a scale-free structured population in high-mutation situations. EPL 89, 18006 (2010)

    Article  Google Scholar 

  19. Fu, F., Wang, L.: Coevolutionary dynamics of opinions and networks: from diversity to uniformity. Phys. Rev. E 78, 016104 (2008)

    Article  Google Scholar 

  20. Hussein, I.I.: An individual-based evolutionary dynamics model for networked social behaviors. In: 2009 American Control Conference, pp. 5789–5796, Hyatt Regency Riverfront, St. Louis, MO (2009)

    Chapter  Google Scholar 

  21. Xu, X., Chen, Z., Si, G., Hu, X., Luo, P.: A novel definition of generalized synchronization on networks and a numerical simulation example. Comput. Math. Appl. 56, 2789–2794 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Eigen, M., Schuster, P.: The Hypercycle: A Principle of Natural Self-Organization. Springer, London (1979)

    Google Scholar 

  23. Hofbauer, J., Sigmund, K.: Evolutionary Games and Population Dynamics. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  24. Erdös, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci. 5, 17–60 (1959)

    Google Scholar 

  25. Batagelj, V., Mrvar, A.: Networks/Pajek, program for large network analysis (2005)

  26. Komarova, N.L.: Replicator–mutator equation, universality property and population dynamics of learning. J. Theor. Biol. 230, 227–239 (2004)

    Article  MathSciNet  Google Scholar 

  27. Mitchener, W.G., Nowak, M.A.: Chaos and language. Proc. R. Soc. B 271, 701–704 (2004)

    Article  Google Scholar 

  28. Evan-Iwanowski, R.M., Lu, C.H.: Nonstationary process: nonstationary bifurcation maps, evolutionary dynamics. Nonlinear Dyn. 21(4), 337–352 (2000)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xulin Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, X., Chen, Z., Si, G. et al. The chaotic dynamics of the social behavior selection networks in crowd simulation. Nonlinear Dyn 64, 117–126 (2011). https://doi.org/10.1007/s11071-010-9850-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-010-9850-z

Keywords

Navigation