Skip to main content

Macroscopic First Order Models of Multicomponent Human Crowds with Behavioral Dynamics

  • Chapter
  • First Online:
Advances in Computational Fluid-Structure Interaction and Flow Simulation

Abstract

This paper presents a new approach to the behavioral dynamics of human crowds. Macroscopic first order models are derived based on mass conservation at the macroscopic scale, while methods of the kinetic theory are used to model the decisional process by which walkers select their velocity direction. The present approach is applied to describe the dynamics of a homogeneous crowd in venues with complex geometries. Numerical results are obtained using a finite volume method on unstructured grids. Our results visualize the predictive ability of the model. Solutions for heterogeneous crowd can be obtained by the same technique where crowd heterogeneity is modeled by dividing the whole system into subsystems identified by different features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agnelli, J.-P., Colasuonno, F., Knopoff, D.: A kinetic theory approach to the dynamics of crowd evacuation from bounded domains. Math. Models Methods Appl. Sci. 25, 109–129 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bellomo, N., Gibelli, L.: Toward a behavioral-social dynamics of pedestrian crowds. Math. Models Methods Appl. Sci. 25, 2417 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bellomo, N., Soler, J.: On the mathematical theory of the dynamics of swarms viewed as complex systems. Math. Models Methods Appl. Sci. 22, paper No. 1140006 (2012)

    Google Scholar 

  4. Bellomo, N., Gibelli, L.: Behavioral crowds: Modeling and Monte Carlo simulations toward validation, Comput. Fluids, in press doi:10.1016/j.compfluid.2016.04.022

    Google Scholar 

  5. Bellomo, N., Bellouquid, A., Knopoff, D.: From the micro-scale to collective crowd dynamics. Multiscale Model. Simul. 11, 943–963 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bellomo, N., Knopoff, D., Soler, J.: On the difficult interplay between life, “complexity”, and mathematical sciences Math. Models Methods Appl. Sci. 23, 1861–1913 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bellomo, N., Herrero, M.A., Tosin, A.: On the dynamics of social conflicts looking for the black swan. Kinet. Relat. Models 6 (3), 459–479 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bellomo, N., Bellouquid, A., Nieto, J., Soler, J.: On the multiscale modeling of vehicular traffic: from kinetic to hydrodynamics. Discr. Contin. Dyn. Syst. Series B 19, 1869–1888 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bellouquid, A., De Angelis, E., Fermo, L.: Towards the modeling of vehicular traffic as a complex system: a kinetic theory approach. Math. Models Methods Appl. Sci. 22, paper No. 1140003 (2012)

    Google Scholar 

  10. Borsche, R., Klar, A., Köhn, S., Meurer, A.: Coupling traffic flow networks to pedestrian motion. Math. Models Methods Appl. Sci. 24, 359–380 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cristiani, E., Piccoli, B., Tosin, A.: Multiscale Modeling of Pedestrian Dynamics. Springer, Berlin (2014)

    Book  MATH  Google Scholar 

  12. Daamen, W., Hoogedorn, S.P.: Experimental research of pedestrian walking behavior. TRB Annual Meeting CD-ROM (2006)

    Google Scholar 

  13. Degond, P., Appert-Rolland, C., Moussaïd, M., Pettré, J., Theraulaz, G.: A hierarchy of heuristic-based models of crowd dynamics. J. Stat. Phys. 152 (6), 1033–1068 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ferziger, J.H., Peric, M.: Computational Methods for Fluid Dynamics. Springer Science & Business Media, Berlin (2012)

    MATH  Google Scholar 

  15. Helbing, D.: Traffic and related self-driven many-particle systems. Rev. Modern Phys. 73, 1067–1141 (2001)

    Article  Google Scholar 

  16. Helbing, D., Johansson, A.: Pedestrian crowd and evacuation dynamics. In: Encyclopedia of Complexity and System Science, pp. 6476–6495. Springer, Berlin (2009)

    Google Scholar 

  17. Helbing, D., Johansson, A., Al-Abideen, H.Z.: Dynamics of crowd disasters: an empirical study. Phys. Rev. E 75, 046109 (2007)

    Article  Google Scholar 

  18. Hughes, R.L.: The flow of human crowds. Annu. Rev. Fluid Mech. 35, 169–182 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Moussaïd, M., Theraulaz, G.: Comment les piétons marchent dans la foule. La Recherche 450, 56–59 (2011)

    Google Scholar 

  20. Moussaïd, M., Helbing, D., Garnier, S., Johansson, A., Combe, M., Theraulaz, G.: Experimental study of the behavioural mechanisms underlying self-organization in human crowds. Proc. R. Soc. B 276, 2755–2762 (2009)

    Article  Google Scholar 

  21. Nowak, M.A.: Evolutionary Dynamics: Exploring the Equations of Life. Belknap Press of Harvard University Press, Cambridge, MA (2006)

    MATH  Google Scholar 

  22. Schadschneider, A., Seyfried, A.: Empirical results for pedestrian dynamics and their implications for modeling. Netw. Heterog. Media 6, 545–560 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Seyfried, A., Steffen, B., Klingsch, W., Boltes, M.: The fundamental diagram of pedestrian movement revisited. J. Stat. Mech.: Theory Exp. 360, 232–238 (2006)

    Google Scholar 

  24. Talischi, C., Paulino, G.H., Pereira, A., Menezes, I.F.M.: PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab. Struct. Multidiscip. Optim. 45, 309–328 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the European Union’s Seventh Framework Programme (FP7/2007-2013) under Grant Agreement Number 313161 (eVACUATE). Project title: “A holistic, scenario independent, situation-awareness and guidance system for sustaining the Active Evacuation Route for large crowds.” This publication reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Bellomo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bellomo, N., Berrone, S., Gibelli, L., Pieri, A.B. (2016). Macroscopic First Order Models of Multicomponent Human Crowds with Behavioral Dynamics. In: Bazilevs, Y., Takizawa, K. (eds) Advances in Computational Fluid-Structure Interaction and Flow Simulation. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-40827-9_23

Download citation

Publish with us

Policies and ethics