Skip to main content
Log in

Julia sets of Newton’s method for a class of complex-exponential function F(z)=P(z)e Q(z)

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we analyze the theory of the Julia set (J set) of Newton’s method, construct the Julia sets of Newton’s method of function \(F(z)=ze^{z^{w}}\) (w∈ℂ) through iteration method, and analyze the attracting region of the two fixed points 0 and ∞ when w are different values. Consequently, we draw the following conclusions: (1) When the judge conditions for the iterative algorithm are changed to |N(z n )−z n |≤EOF, the properties of the figures in our experiments are contrary to the conclusions in (Wegner and Peterson, Fractal Creations, pp. 168–231, 1991); (2) The attracting regions of the fixed points 0 and ∞ for w=2n (n=0,±2,±4,…) are symmetrical about x-axis and y-axis; select the main argument to be in [−π,π), for arbitrary w=α (α∈ℂ), the attracting regions of the fixed points 0 and ∞ are symmetrical about the x-axis; (3) The attracting regions of the two fixed points 0 and ∞ of J set for wη have rotational symmetry of η times; (4) If w=−4.7, k=0.8, then the attracting regions of different magnifications display a startling similarity, J set holds infinite self-similar structures; (5) When w is a complex number, because the selection of main argument θ z in the negative x-axis is not continuous, the fault and rupture of the attracting regions of the two fixed points 0 and ∞ appear only in the negative x-axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Holmgren, R.A.: A First Course in Discrete Dynamical Systems, pp. 107–188. Springer, New York (1996)

    MATH  Google Scholar 

  2. Kneisl, K.: Julia sets for the super-Newton method, Cauchy’s method, and Halley’s method. Chaos 11(2), 359–370 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  3. Wang, X.Y.: Fractal Mechanism of General M-J Sets, pp. 10–58. Dalian University of Technology Press, Dalian (2002)

    Google Scholar 

  4. Wegner, T., Peterson M.: Fractal Creations. The Waite Group Press, Mill Valley (1991), pp. 168–231

    Google Scholar 

  5. Walter, D.J.: Systemised serendipity for producing computer art. Comput. Graph. 17(6), 699–700 (1993)

    Article  Google Scholar 

  6. Moonja, J., Gi, O.K., Seong, A.K.: Dynamics of Newton’s method for solving some equations. Comput. Graph. 26(2), 271–279 (2002)

    Article  Google Scholar 

  7. Gilbert, W.J.: The complex dynamics of Newton’s method for a double root. Comput. Math. Appl. 22(10), 115–119 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gilbert, W.J.: Newton’s method for multiple roots. Comput. Graph. 18(2), 227–229 (1994)

    Article  Google Scholar 

  9. Gilbert, W.J.: Generalizations of Newton’s Method. Fractals 9(3), 251–262 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Wang, X.Y., Liu, W.: The Julia set of Newton’s method for multiple roots. Appl. Math. Comput. 172(1), 101–110 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Wang, X.Y., Liu, B.: Julia sets of the Schröder iteration functions of a class of one-parameter polynomials with high degree. Appl. Math. Comput. 178(2), 461–473 (2006)

    MATH  MathSciNet  Google Scholar 

  12. Chen, N., Zhu, X.L., Chung, K.W.: M and J sets from Newton’s transformation of the transcendental mapping \(F(z)=e^{z^{w}+c}\) with vcps. Comput. Graph. 26(3), 371–383 (2002)

    Article  Google Scholar 

  13. Çilingir, F.: On infinite area for complex exponential function. Chaos Solitons Fractals 22(5), 1189–1198 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Çilingir, F.: Finiteness of the area of basins of attraction of relaxed Newton method for certain holomorphic functions. Int. J. Bifurc. Chaos 14(12), 4177–4190 (2004)

    Article  MATH  Google Scholar 

  15. Curry, J., Garnett, L., Sullivan, D.: On the iteration of rational functions: Computer experiments with Newton’s method. Commun. Math. Phys. 91, 267–277 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  16. Ralston, A., Rabinowitz, P.: A First Course in Numerical Analysis. McGraw-Hill, New York (1978), pp. 73–122

    MATH  Google Scholar 

  17. Blancharel, P.: Complex analytic dynamics on the Riemann sphere. Bull. Am. Math. Soc. 11(1), 88–144 (1984)

    Google Scholar 

  18. Wang, X.Y., Wang, T.T.: Julia sets of generalized Newton’s method. Fractals 15(4), 323–336 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. Milnor, J.: Dynamics in One Complex Variable-Introductory Lectures, 2nd edn., pp. 16–98. Vieweg, Wiesbaden (2000)

    MATH  Google Scholar 

  20. Wang, X.Y., Yu, X.J.: Julia set of the Newton transformation for solving some complex exponential equation. Fractals 17(2), 197–204 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  21. Wang, X.Y., Song, W.J., Zou, X.L.: Julia set of the Newton method for solving some complex exponential equation. Int. J. Image Graph. 9(2), 153–169 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing-Yuan Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, XY., Li, YK., Sun, YY. et al. Julia sets of Newton’s method for a class of complex-exponential function F(z)=P(z)e Q(z) . Nonlinear Dyn 62, 955–966 (2010). https://doi.org/10.1007/s11071-010-9777-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-010-9777-4

Keywords

Navigation