Skip to main content
Log in

Superpositions of Functions with Fractal Properties

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We study structural, integral, differential, variational, and fractal properties of a function f whose argument \( x={\Delta }_{\alpha_1{\alpha}_2\dots {\alpha}_n\dots}^{Q_s^{\ast }} \) is represented by a polybasic s-symbol \( {Q}_s^{\ast } \) -representation (1 < sN) and its corresponding value is expressed as follows: \( f\left(x={\Delta }_{\alpha_1{\alpha}_2\dots {\alpha}_n\dots}^{Q_s^{\ast }}\right)={a}^{\alpha_1{u}_1+{\alpha}_2{u}_2+\dots +{\alpha}_n{u}_n+\dots }, \) where u1 + u2 + … is a given convergent positive series and αn ∈ {0, 1, …, s - 1}.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Pratsiovytyi and N. Vasylenko, “Fractal properties of functions defined in terms of Q-representation,” Int. J. Math. Anal. (Ruse), 7, No. 61-64, 3155–3167 (2013).

    Article  MathSciNet  Google Scholar 

  2. M. V. Prats’ovytyi, Fractal Approach to the Investigation of Singular Distributions [in Ukrainian], National Pedagogic University, Kyiv (1998).

  3. M. V. Pratsiovytyi, Ya. V. Goncharenko, N. V. Dyvliash, and S. P. Ratushniak, “Inversor of digits of \( {Q}_s^{\ast } \) -representation of numbers,” Mat. Stud., 55, No. 1, 37–43 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  4. M. V. Prats’ovytyi and S. P. Ratushnyak, “Distribution of values of a fractal function of random argument,” Nauk. Chasopys. Nats. Ped. Univ. Drahomanova, Ser. 1, Fiz.-Mat. Nauk., No. 16, 150–160 (2014).

  5. M. V. Pratsiovytyi and S. P. Ratushnyak, “Continuous nowhere differentiable function with fractal properties defined in terms of Q2-representation,” Nelin. Kolyv., 23, No. 2, 231–252 (2020); English translation: J. Math. Sci., 258, No. 5, 670–697 (2021).

  6. B. Sendov, “Binary self-similar fractal functions,” Fundam. Prykl. Mat., 5, No. 2, 589–595 (1999).

    MathSciNet  MATH  Google Scholar 

  7. M. V. Pratsiovytyi, Ya. V. Goncharenko, S. O. Dmytrenko, I. M. Lysenko, and S. P. Ratushniak, “On one class of functions with fractal properties,” Bukov. Mat. Zh., 6, No. 1, 273–283 (2021).

    MATH  Google Scholar 

  8. N. O. Korsun’ and M. V. Pratsiovytyi, “On the set of partial sums of alternating series with one condition of homogeneity and a generalization of the binary representation of numbers,” Nauk. Chasopys. Nats. Ped. Univ. Drahomanova, Ser. 1, Fiz.-Mat. Nauk., No. 10, 28–39 (2009).

  9. J. A. Guthrie and I. E. Nymann, “The topological structure of the set of subsums of an infinite series,” Collog. Math., 55, No. 2, 323–327 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  10. V. P. Markitan, M. V. Prats’ovytyi, and I. O. Savchenko, “Superfractality of the set of incomplete sums of one positive series,” Ukr. Mat. Zh., 70, No. 10, 1403–1416 (2018); English translation: Ukr. Math. J., 70, No. 10, 1619–1634 (2019).

  11. J. E. Nymann and R. A. Saenz, “On the paper of Guthrie and Nymann on subsums of infinite series. The topological structure of the set of subsums of an infinite series,” Collog. Math., 68, 259–264 (1995).

    Article  Google Scholar 

  12. M. V. Pratsiovytyi, Ya. V. Goncharenko, I. M. Lysenko, and S. P. Ratushniak, “Fractal functions of exponential type that is generated by the \( {Q}_s^{\ast } \) -representation of argument,” Mat. Stud., 56, No. 2, 133–143 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  13. S. Kakeya, “On the partial sums of an infinite series,” Tohoku Sci. Rep., 3, No. 4, 159–164 (1914).

    MATH  Google Scholar 

  14. Ya. Vynnyshyn, V. Markitan, M. Pratsiovytyi, and I. O. Savchenko, “Positive series for which the sets of subsums are Cantorvals,” in: Proc. Internat. Geom. Cent., 12, No. 2, 26–42 (2019); https://doi.org/10.15673/tmgc.v12i2.1455.

  15. S. Albeverio, M. Pratsiovytyi, and G. Torbin, “Fractal probability distributions and transformations preserving the Hausdorff–Besicovitch dimension,” Ergodic Theory Dynam. Systems, 24, 1–16 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  16. M. V. Pratsiovytyi, “Distributions of sums of random power series,” Dop. Nats. Akad. Nauk Ukr., No. 5, 32–37 (1996).

  17. M. V. Pratsiovytyi, “Convolutions of singular distributions,” Dop. Nats. Akad. Nauk Ukr., No. 9, 36–42 (1997).

  18. R. Salem, “On some singular monotonic functions which are strictly increasing,” Trans. Amer. Math. Soc., 53, 423–439 (1943).

    Article  MathSciNet  MATH  Google Scholar 

  19. G. Marsaglia, “Random variables with independent binary digits,” Ann. Math. Statist., 42, No. 2, 1922–1929 (1971).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Pratsiovytyi.

Additional information

Translated from Neliniini Kolyvannya, Vol. 24, No. 4, pp. 498–517, October–December, 2021.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pratsiovytyi, M.V., Vovk, Y.Y., Lysenko, I.M. et al. Superpositions of Functions with Fractal Properties. J Math Sci 273, 248–270 (2023). https://doi.org/10.1007/s10958-023-06497-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-023-06497-9

Navigation