Skip to main content
Log in

Mechanical properties and impedance model for the branching network of the sapping system in the leaf of Hydrangea Macrophylla

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

An electrical analogue model has been developed based on main leaf hydraulics characteristics and intrinsic geometry. The simulations show good qualitative agreements with specialized literature reports. The constant-phase behavior and the variation with ambient temperature of the frequency response of the leaf impedance are assessed by means of simulation studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

δ :

Womersley parameter = \(R\sqrt{\omega \rho /\mu}\)

ε0′,ε10′:

phase angles of the complex form of Bessel functions of the first kind and orders 0, respectively 1 (rad)

μ :

dynamic viscosity (kg/m⋅s)

θ :

circular coordinate

ρ :

sap density (kg/m3)

ω :

circular frequency (rad/s)

c x :

capacity per distance unit (l⋅m/kPa)

c * :

the complex velocity of wave propagation

f :

frequency (Hz)

g x :

conductance per distance unit (l⋅m/kPa)

i :

imaginary unit\({}=\sqrt{-1}\)

l x :

inductance per distance unit (kPa⋅m⋅s2/l)

p :

pressure (kPa)

q :

flow (l/s)

r :

radial coordinate

r x :

resistance per distance unit (kPa⋅m⋅s/l)

t :

time (s)

u,v,w:

velocity components in the radial, circular, and axial directions, respectively

z :

axial coordinate

y :

ratio of radial position to radius=r/R

C e :

compliance (l/kPa)

J :

Bessel function

:

airway length (m)

L e :

inertance (kPa⋅s2/l)

M :

modulus for pressure gradient (kPa)

M0′,M10′:

modulus of the complex form of Bessel functions of rank 1 and orders 0, respectively 1

P :

pressure (kPa)

Q :

flow (l/s)

R e :

resistance (kPa⋅s/l)

R :

airway inner radius (m)

Z :

impedance (kPa⋅s/l)

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York (1972), ISBN 978-0-486-61272-0

    MATH  Google Scholar 

  2. Bano, N., Hashmi, A.: Electrical studies of leaves over wide frequency range. IEEE Trans. Dielectr. Electr. Insul. 3(2), 229–232 (1996)

    Article  Google Scholar 

  3. Bergen, A.R., Vittal, V.: Power System Analysis, 2nd edn. Pearson Education, Upper Saddle River, New Jersey (1999)

    Google Scholar 

  4. Cochard, H., Martin, R., Gross, P., Bogeat-Triboulot, M.: Temperature effects on hydraulic conductance and water relations of Quercus robur. J. Exp. Bot. 51(348), 1255–1259 (2000)

    Article  Google Scholar 

  5. Cochard, H., Venisse, J., Barigah, T., Brunel, N., Herbette, S., Guilliot, A., Tyree, M., Sakr, S.: Putative role of aquaporins in variable hydraulic conductance of leaves in response to light. Plant Physiol. 143, 122–133 (2007)

    Article  Google Scholar 

  6. Eke, A., Herman, P., Kocsis, L., Kozak, L.: Fractal characterization of complexity in temporal physiological signals. Physiol. Meas. 23, R1–R38 (2002)

    Article  Google Scholar 

  7. Gabrys, E., Rybaczuk, M., Kedzia, A.: Fractal models of circulatory system. Symmetrical and asymmetrical approach comparison. Chaos Solitons Fractals 24(3), 707–715 (2004)

    Article  Google Scholar 

  8. Gheorghiu, S., Kjelstrup, S., Pfeifer, P., Coppens, M.O.: Is the lung an optimal gas exchanger? In: Losa, G., Merlini, D., Nonnenmacher, T., Weibel, E.R. (eds.) Fractals in Biology and Medicine, vol. IV, pp. 31–42. Birkhäuser, Basel (2005)

    Chapter  Google Scholar 

  9. Franken, H., Clément, J., Cauberghs, M., Van de Woestijne, K.: Oscillating flow of a viscous compressible fluid through a rigid tube: a theoretical model. IEEE Trans. Biomed. Eng. 28(5), 416–420 (1981)

    Article  Google Scholar 

  10. Ionescu, C., Segers, P., De Keyser, R.: Mechanical properties of the respiratory system derived from morphologic insight. IEEE Trans. Biomed. Eng. 56(4), 949–959 (2009)

    Article  Google Scholar 

  11. Jesus, I., Machado, T., Cunha, B.: Fractional electrical impedances in botanical elements. J. Vib. Control 14, 1389–1402 (2008). Special issue on “Fractional Differentiation and its Applications”

    Article  Google Scholar 

  12. Mandelbrot, B.: The Fractal Geometry of Nature. Freeman, New York (1983)

    Google Scholar 

  13. Price, C., Enquist, B., Savage, V.: A general model for allometric covariation in botanical form and function. Proc. Natl. Acad. Sci. 104(32), 13204–13209 (2007)

    Article  Google Scholar 

  14. Sack, L., Holbrook, M.: Leaf hydraulics. Annu. Rev. Plant Biol. 57, 361–381 (2006)

    Article  Google Scholar 

  15. Saito, T., Terashima, I.: Reversible decreases in the bulk elastic modulus of mature leaves of deciduous Quercus species subjected to two drought treatments. Plant Cell Environ. 27, 863–875 (2004)

    Article  Google Scholar 

  16. Tenreiro Machado, J.A., Jesus, I.S.: A suggestion from the past? Fract. Calc. Appl. Anal. 7(4), 403–407 (2004)

    MATH  Google Scholar 

  17. Welty, J., Wicks, C., Wilson, R.: Fundamentals of Momentum, Heat and Mass Transfer. Wiley, New York (1969)

    Google Scholar 

  18. Womersley, J.R.: An elastic tube theory of pulse transmission and oscillatory flow in mammalian arteries. Wright Air Development Center, Technical Report WADC-TR56-614 (1957)

  19. Yamazaki, E., Kurita, O., Matsumura, Y.: High viscosity of hydrocolloid from leaves of cochorus olitorius L. Food Hydrocoll. 23(3), 655–660 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clara Ionescu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ionescu, C., Tenreiro Machado, J. Mechanical properties and impedance model for the branching network of the sapping system in the leaf of Hydrangea Macrophylla . Nonlinear Dyn 60, 207–216 (2010). https://doi.org/10.1007/s11071-009-9590-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-009-9590-0

Keywords

Navigation