Skip to main content
Log in

Fractional Approach for Estimating Sap Velocity in Trees

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

In the context of fractional calculus (FC), this paper is devoted to model thermal processes in trees based on the measurement of the temperature difference (?T) between sensors located above and below a heater inserted in the tree trunk. By evaluating several temperature curves taken from real trees of different species, the current approach shows that the temperature in each probe can be successfully described by the two-parameter Mittag-Leffler function Ea,ß. Then, a simple methodology is followed to derive a novel expression of the heat-pulse velocity (v) as a function of ?T and the parameter a of the mentioned Ea,ß function. Experimental results are given to validate the goodness of the current proposal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Aoki, M. Sen, and S. Paolucci, Approximation of transient temperatures in complex geometries using fractional derivatives. Heat Mass Transfer 44, No 7 (2008), 771–777.

    Article  Google Scholar 

  2. J.L. Battaglia, O. Cois, L. Puigsegur, and A. Oustaloup, Solving an inverse heat conduction problem using a non-integer identified model. Int. J. Heat Mass Transfer 44, No 14 (2001), 2671–2680.

    Article  Google Scholar 

  3. P. Becker, Limitations of a compensation heat pulse velocity system at low sap flow: Implications for measurements at night and in shaded trees. Tree Physiol. 18, No 3 (1998), 177–184.

    Article  Google Scholar 

  4. S.O. Burgess, M.A. Adams, N.C. Turner, C.R. Beverly, C.K. Ong, A.H. Khan, and T.M. Bleby, An improved heat pulse method to measure low and reverse rates of sap flow in woody plants. Tree Physiol. 21, No 9 (2001), 589–598.

    Article  Google Scholar 

  5. J.E. Fernández, P.J. Durán, M.J. Palomo, A. Díaz-Espejo, V. Chamorro and I.F. Girón, Calibration of sap flow estimated by the compensation heat pulse method in olive, plum and orange trees: relationships with xylem anatomy. Tree Physiol. 26, No 6 (2006), 719–728.

    Article  Google Scholar 

  6. J.D. Gabano and T. Poinot, Fractional modelling applied to heat conductivity and diffusivity estimation. Phys. Scr. 136 (2009), 014015.

    Article  Google Scholar 

  7. J.D. Gabano and T. Poinot, Estimation of thermal parameters using fractional modelling. Signal Process. 91, No 4 (2011), 938–948.

    Article  Google Scholar 

  8. S. Green, B. Clothier, and B. Jardine, Theory and practical application of heat pulse to measure sap flow. Agron. J. 95 (2003), 1371–1379.

    Article  Google Scholar 

  9. V.V. Kulish and J.L. Lage, Fractional-diffusion solutions for transient local temperature and heat flux. J. Heat Transfer 122, No 2 (2000), 372–376.

    Article  Google Scholar 

  10. C. Poblete-Echeverría, S. Ortega-Farias, M. Zuñiga and S. Fuentes, Evaluation of compensated heat-pulse velocity method to determine vine transpiration using combined measurements of eddy covariance system and microlysimeters. Agric. Water Manage. 109, (2012), 11–19.

    Article  Google Scholar 

  11. Igor Podlubny, Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Academic Press, Boston etc. (1999).

    MATH  Google Scholar 

  12. Igor Podlubny, Fitting data using the Mittag-Leffler function (2011). Online at: http://www.mathworks.com/matlabcentral/fileexchange/32170-fitting-data-using-the-mittag-leffler-function.

    Google Scholar 

  13. M.Z. Protic, M.B. Stankovic, D.M. Mitic and B.T. Todorovic, Application of fractional calculus in ground heat flux estimation. Therm. Sci. 16, No 2 (2012), 373–384.

    Article  Google Scholar 

  14. D. Sierociuk, A. Dzielinski, G. Sarwas, I. Petras, I. Podlubny, and T. Skovranek, Modeling heat transfer in heterogeneous media using fractional calculus. Philos. Trans. Roy. Soc. A: Math. Phys. Eng. Sci. 371, No 1990 (2013), 20120146.

    MATH  Google Scholar 

  15. R.H. Swanson and W.A. Whitfield, A numerical analysis of heat pulse velocity theory and practice. J. Exp. Bot. 32, No 1 (1981), 221–239.

    Article  Google Scholar 

  16. I. Tejado, S.H. HosseinNia, D. Torres, B.M. Vinagre, A. López-Bernal, F.J. Villalobos, L. Testi, and I. Podlubny, Fractional models for measuring sap velocities in trees. In: Proc. 2014 Int. Conf. Fractional Differentiation and Its Applications (ICFDA’14) (2014).

    Google Scholar 

  17. L. Testi and F.J. Villalobos, New approach for measuring low sap velocities in trees. Agric. For. Meteorol. 149 (2009), 730–734.

    Article  Google Scholar 

  18. L. Vázquez, J.J. Trujillo and M.P. Velasco, Fractional heat equation and the second law of thermodynamics. Fract. Calc. Appl. Anal. 14, No 3 (2011), 334–342; DOI: 10.2478/s13540-011-0021-9; http://link.springer.com/article/10.2478/s13540-011-0021-9.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inés Tejado.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tejado, I., Vinagre, B.M., Torres, D. et al. Fractional Approach for Estimating Sap Velocity in Trees. FCAA 18, 479–494 (2015). https://doi.org/10.1515/fca-2015-0030

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2015-0030

MSC 2010

Keywords

Navigation