Skip to main content

Advertisement

Log in

Shalstab mathematical model and WorldView-2 satellite images to identification of landslide-susceptible areas

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Natural hazards, occurring all over the world, may become a disaster when humans and nature interact. In Brazil, landslides triggered by heavy rainfall are the most common phenomenon that affects the population. Due to the economic and social losses and deaths, the identification and monitoring of risk areas are extremely important. Therefore, this study aims to identify the landslide-susceptible areas in Vila Albertina and Britador neighborhood, located in Campos do Jordão city in São Paulo state, Brazil. Using the Shalstab mathematical model, which analyzes the slope stability, and satellite images from WorldView-2 sensor with data mining techniques, it was identified the most susceptible areas for this phenomenon and the main characteristics of human occupation that might induce landslides. To achieve this goal, three scenarios were simulated for each neighborhood, changing the values of the geotechnical parameters, used as input on Shalstab. The results of susceptibility areas were consistent with the reality observed in these neighborhoods and the landslide scars corroborate with the assumption that anthropic changes induce landslides. The satellite image allowed the identification of different types of human interaction and its changes in steep slope areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Ahrendt A (2005) Movimentos de Massa Gravitacionais—Proposta de um Sistema de Previsão: Aplicação na Área Urbana de Campos do Jordão—SP. Thesis (Doutorado), Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos

  • Araújo EHG, Kux HJH, Florenzano TG (2008) Ortorretificação de imagens de satélite QuickBird para aplicações urbanas. Revista Brasileira de Cartografia 60(2):205–213

    Google Scholar 

  • Baum RL, Savage WZ, Godt JW (2008) TRIGRS—A Fortran program for transient rainfall infiltration and grid-based regional slope-stability analysis. US Geological Survey Open-file report 02-0424. https://pubs.usgs.gov/of/2008/1159/. Accessed 14 May 2018

  • Bortolozo CA, Motta MFB, Andrade MRM, Lavalle LV, Mendes RM, Simões SJC, Mendes TSG, Pampuch LA (2019) Combined analysis of electrical and electromagnetic methods with geotechnical soundings and soil characterization as applied to a landslide study in Campos do Jordão City, Brazil. J Appl Geophys 161:1–14

    Article  Google Scholar 

  • Carrara A, Cardinali M, Detti R, Guzzetti F, Pasqui V, Reichenbach P (1991) GIS techniques and statistical models in evaluating landslide hazard. Earth Surf Process. Landf 16:427–445

    Article  Google Scholar 

  • Centro Nacional de Monitoramento e Alerta de Desastres Naturais—CEMADEN (2017) Histórico de criação do Cemaden. https://www.cemaden.gov.br/historico-da-criacao-do-cemaden/. Accessed 24 Jan 2017

  • Cheng K, Wei C, Chang S (2004) Locating landslides using multitemporal satellite images. Adv Space Res 33:296–301

    Article  Google Scholar 

  • Cruden DM, Varnes DJ (1996) Landslides types and processes. In: Turner AK, Shuster RL (eds) Landslides: investigation and mitigation. Transportation Research Board Business Office, Washington, pp 36–75

    Google Scholar 

  • Dietrich WE, Montgomery DR (1998) SHALSTAB: a digital terrain model for mapping shallow landslide potential. National Council of the Paper Industry for Air and Stream Improvement (NCASI), Technical Report, 29 p

  • Dietrich WE, Bellugi D, Real de Asua R (2001) Validation of the shallow landslide model, SHALSTAB, for forest management. Water Sci Appl 2:195–227

    Article  Google Scholar 

  • Digital Globe (2017). Satellite information. https://www.digitalglobe.com/resources/satellite-information. Accessed 24 Jan 2017

  • Earth Explorer—USGS (2017). https://earthexplorer.usgs.gov/. Accessed 8 May 2017

  • EngeSat (2017) Image satellite. http://www.engesat.com.br/imagem-de-satelite/ikonos/. Accessed 4 Jul 2017

  • Fernandes NF, Guimarães RF, Gomes RAT, Vieira BC, Montgomey DR, Greenberg HM (2004) Topographic controls of landslides in Rio de Janeiro: field evidences and modeling. CATENA 55:163–181

    Article  Google Scholar 

  • Gallo-Junior H, Olivato D, Carvalho JL (2010) Sobreposição de Territórios e Gestão de Unidades de Conservação de Proteção Integral: Estudo Aplicado ao Município de Campos do Jordão. In: Encontro Nacional de Geógrafos, Anais XVI, Porto Alegre—RS, julho 25 a 31

  • GeoStudio (2005) GeoStudio tutorials includes student edition lessons, 1st edn. Geo-Slope International Ltd., Calgary, p 485

    Google Scholar 

  • Gomes RAT, Guimarães RF, Carvalho Júnior OA, Fernandes NF (2005) Análise de um modelo de previsão de deslizamentos (SHALSTAB) em diferentes escalas cartográficas. Rev Solos e Rocha 28:85–97

    Google Scholar 

  • Gomes RAT, Guimarães RF, Carvalho Júnior OA, Fernandes NF, Vargas Júnio E (2008) Identification of the affected areas by mass movement through a physically based model of landslide hazard combined with an empirical model of debris flow. Nat Hazards 45:197–209

    Article  Google Scholar 

  • Gomes RAT, Guimarães RF, Carvalho Júnior OA, Fernandes NF, Amaral Júnior EV (2013) Combining Spatial Models for shallow landslides and debris-flows prediction. Remote Sens 5:2219–2237

    Article  Google Scholar 

  • Guimarães RF, Montgomery DR, Greenberg HM, Fernandes NF, Gomes RAT, Carvalho Júnior OA (2003) Parameterization of soil properties for a model of topographic controls on shallow landsliding. Application to Rio de Janeiro. Eng Geol 69:99–108

    Article  Google Scholar 

  • Guimarães RF, Gomes RAT, Carvalho Júnior OA, Martins ES, Fernandes NF (2009) Análise temporal das áreas suscetíveis a escorregamentos rasos no Parque Nacional da Serra dos Órgãos (RJ) a partir de dados pluviométricos. Rev Brasil de Geociênc 39:192–200

    Google Scholar 

  • Guzzetti F, Mondini AC, Cardinali M, Fiorucci F, Santangelo M, Chang KT (2012) Landslide inventory maps: new tools for an old problem. Earth Sci Rev 112:42–66

    Article  Google Scholar 

  • Hiruma ST, Riccomini C, Modenesi-Gauttieri MC (2001) Neotectônica no planalto de Campos do Jordão, SP. Revista Brasileira de Geociências 31:375–384

    Article  Google Scholar 

  • Instituto Brasileiro de Geografia e Estatística—IBGE (2016) Cidades e estados do Brasil Disponível em. http://cidades.ibge.gov.br/xtras/perfil.php?lang=&codmun=350970. Accessed 13 Oct 2016

  • Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174

    Article  Google Scholar 

  • Larsen MC, Torres-Sanchez AJ (1998) The frequency and distribution of recent landslides in three montane tropical regions of Puerto Rico. Geomorphology 24:309–331

    Article  Google Scholar 

  • Lin PS, Lin JY, Hung HC, Yang MD (2002) Assessing debris flow hazard in a watershed in Taiwan. Eng Geol 66:295–313

    Article  Google Scholar 

  • Mendes RM, Valerio-Filho MV (2015) Real-time monitoring of climatic and geotechnical variables during landslides on the slopes of Serra do Mar and Serra da Mantiqueira (São Paulo state—Brazil). Engineering 7:140–159

    Article  Google Scholar 

  • Mendes RM, Andrade MRM, Tomasella J, Moraes MAE, Scofield GB (2018a) Understanding shallow landslides in Campos do Jordão municipality—Brazil: disentangling the anthropic effects from natural causes in the disaster of 2000. Nat Hazards Earth Syst Sci 18:15–30

    Article  Google Scholar 

  • Mendes RM, Andrade MRM, Graminha CA, Prieto CC, Ávla FF, Camarinha PIM (2018b) Stability analysis on urban slopes: case study of na anthropogenic-induced landslide in São José dos Campos, Brazil. Geotech Geol Eng Int J 36:599–610

    Article  Google Scholar 

  • Meneghetti GT, Kux HJH (2014) Mapeamento da cobertura da terra do município de Raposa (MA) utilizando imagens WorldView-2, o aplicativo interimage e mineração de dados. Revista Brasileira de Cartografia 66:365–377

    Google Scholar 

  • Metternicht G, Hurni L, Gogu R (2005) Remote sensing of landslides: an analysis of the potential contribution to geo-spatial systems for hazard assessment in mountainous environments. Remote Sens Environ 98:284–303

    Article  Google Scholar 

  • Michel GP, Kobiyama M, Goerl RF (2012) Análise Comparativa entre os Modelos SHALSTAB e SINMAP na Identificação de Áreas Susceptíveis a Escorregamentos Translacionais. In X Encontro Nacional de Engenharia de Sedimentos, Foz do Iguaçu—PR, Dez 3–7

  • Michel GP, Kobiyama M, Goerl RF (2014) Comparative analysis of SHALSTAB and SINMAP for landslide susceptibility mapping in the Cunha River basin, southern Brazil. J Soils Sediment 2014(14):1266–1277

    Article  Google Scholar 

  • Modenesi-Gauttieri MC, Hiruma ST (2004) A Expansão Urbana no Planalto de Campos do Jordão: Diagnóstico Geomorfológico para Fins de Planejamento. Revista do Instituto Geológico SP 25:1–28

    Article  Google Scholar 

  • Montgomery DR (1994) Road surface drainage, channel initiation, and slope stability. Water Resour Res 30:1925–1932

    Article  Google Scholar 

  • Montgomery DR, Dietrich WE (1994) A physically-based model for the topographic control on shallow landsliding. Water Resour Res 30:1153–1171

    Article  Google Scholar 

  • Montgomey DR, Sullivan K, Greenber MH (1998) Regional test of a model for shallow landsliding. Hydrol Process 12:943–955

    Article  Google Scholar 

  • Montgomey DR, Schmidt KM, Greenberg HM, Dietrich WE (2000) Forest clearing and regional landsliding. Geology 28:311–314

    Article  Google Scholar 

  • Montgomey DR, Greenber MH, Laprede B, Nasham B (2001) Sliding in Seattle: test of a model of shallow landsliding potential in an urban environment. In: Wigmosta MS, Burges SJ (eds) Land use and watersheds: human influence on hydrology and geomorphology in urban and forest areas-water science and application monograph, vol 2. American Geophysical Union, Washington, pp 59–73

    Google Scholar 

  • Neto LA, Bráulio N, Salles T, Moura G, Almeida C, Koike K (2006) (coordenadores). Plano Municipal de Redução de Risco. Ministério das Cidades

  • O´Loughlin GH (1986) Prediction of surface saturation zones in natural catchments by topographic analysis. Water Resour Res 22:794–804

    Article  Google Scholar 

  • Pack RT, Tarboton DG, Goodwin CN (1998) The Sinmap Approach to terrain stability mapping. In: Proceedings of the 8th congress of the International Association of Engineering Geology, Vancouver, BC, Canada, 21–25 September, pp 21–25

  • Pesk VA, Disperati AA, Santos JR (2011) Comparação de técnicas de fusão aplicadas à imagens Quickbird-2. Floresta e Ambiente 18:127–134. http://www.floram.org/files/v18n2/v18n2a2.pdf. Accessed 17 Apr 2017

  • Pinho CMD, Fonseca LMG, Korting TS, Almeida CMA, Kux HJH (2012) Land-cover classification of an intra-urban environment using high-resolution images and object-based image analysis. Int J Remote Sens 33:5973–5995

    Article  Google Scholar 

  • Polizel SP, Marques ML, Costa NR, Rossi E, Ferreira MV (2011) Aplicação e avaliação de técnicas de fusão em imagens IKONOS e GeoEye. In: Simpósio Brasileiro de Sensoriamento Remoto, 15. 2001. Anais São José dos Campos: INPE

  • Prieto CC, Mendes RM, Simões SJC, Nobre CA (2017) Comparação entre a aplicação do modelo Shalstab com mapas de suscetibilidade e risco de deslizamento na bacia do córrego Piracuama em Campos do Jordão-SP. Revista Brasileira de Cartografia 69:71–87

    Google Scholar 

  • Pu R, Landry S (2012) A comparative analysis of high spatial resolution IKONOS and WorldView-2 imagery for mapping urban tree species. Remote Sens Environ 125:516–533

    Article  Google Scholar 

  • Ramos VM, Guimarães RF, Carvalho Júnior OA, Redivo AL, Gomes RAT, Cardoso FBF, Fernandes NF (2007) Algorithm for incorporating soil physical properties of each different soil class in a landslide prediction model (SHALSTAB). Soils Rocks 30:139–148

    Google Scholar 

  • Reginatto GMP, Maccarini M, Kobiyama M, Higashi RAR, Grando A, Corseuil CW, Caramez ML (2012) SHALSTAB application to identify the susceptible areas of shallow landslides in Cunha River Watershed, Rio dos Cedros city, SC, Brazil. In: Proceedings of the 4th GEOBIA, Rio de Janeiro—Brazil, May 7–9, p 108

  • Rodrigues TCS (2014) Classificação da cobertura e do uso da terra com imagens WorldView-2 de setores nortes da ilha do Maranhão por meio do aplicativo interIMAGE e de mineração de dados. 2014. Dissertação (Mestrado em Sensoriamento Remoto). Instituto Nacional de Pesquisas Espaciais, São José dos Campos, SP

  • Savage WZ, Godt JW, Baum RL (2004) Modeling time-dependent aerial slope stability. In: Proceedings of 9th international symposium of landslides, landslides-evaluation and stabilization, Rio de Janeiro, RJ, Brazil, 28 June–2 July, vol 1, pp 23–36

  • Tofani V, Segoni S, Agostini A, Catani F, Casagli N (2013) Use of remote sensing for landslide studies in Europe. Nat Hazards Earth Syst Sci 13:299–309

    Article  Google Scholar 

  • Vieira BC, Ramos H (2015) Aplicação do Modelo SHASLTAB para Mapeamento da Susceptibilidade a Escorregamentos Rasos em Caraguatatuba. Revista Departamento de Geografia—USP 29:161–174

    Google Scholar 

  • Wu W, Sidle RC (1995) A distributed slope stability model for steep forested basins. Water Resour Res 31:2097–2110

    Article  Google Scholar 

  • Zêrere JL, Trigo RM, Trigo IF (2005) Shallow and deep landslides induced by rainfall in the Lisbon region (Portugal): assessment of relationships with the North Atlantic Oscillation. Nat Hazards Earth Syst Sci 5:332–344

    Google Scholar 

  • Zhou C, Lee C, Li J, Xu Z (2002) On the spatial relationship between landslides and causative factors on Lantau Island, Hong Kong. Geomorphology 43:197–207

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Mr. Devon Libby, from Digital Globe, for kindly providing the WorldView-2 images used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Téhrrie König.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

König, T., Kux, H.J.H. & Mendes, R.M. Shalstab mathematical model and WorldView-2 satellite images to identification of landslide-susceptible areas. Nat Hazards 97, 1127–1149 (2019). https://doi.org/10.1007/s11069-019-03691-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-019-03691-4

Keywords

Navigation