Skip to main content
Log in

Identification of the affected areas by mass movement through a physically based model of landslide hazard combined with an empirical model of debris flow

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

In tropical areas, mass movements are common phenomena, especially during periods of heavy rainfall, which frequently take place in the summer season. These phenomena have caused loss of life and serious damage to infrastructure and properties. The most prominent of these phenomena are landslides that can produce debris flows. Thus, this article aims at determining affected areas using a model to predict landslide prone areas (SHALSTAB) combined with an empirical model designed to define the debris flow travel distance and area of deposition. The methodology of this work consists of the following steps: (a) elaboration of a digital elevation model (DEM), (b) application of the deterministic SHALSTAB model to locate the landslide prone areas, (c) identification of the debris flow travel distance and area of deposition, and (d) mapping of the affected areas (landslides and debris flows). This work was developed in an area in which many mass movements occurred after intense rainfall during the summer season (February 1996) in the state of Rio de Janeiro, southeast Brazil. All of the scars produced by that event were mapped, allowing for validation of the applied models. The model results show that the mapped landslide locations can adequately be simulated by the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amaral CPD (1996) Escorregamentos no Rio de Janeiro: Inventário, Condicionantes e Redução do Risco. Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 262 pp

  • Baum RL, Savage WZ Godt JW (2002) TRIGRS-A FORTRAN program for transient rainfall infiltration and grid-based regional slope-stability analysis. US Geological Survey Open-File Report 02-0424

  • Baum RL, Coe JA, Godt JW, Harp EL, Reid ME, Savage WZ, Schulz WH, Brien DL, Chleborad AF, McKenna JP, Michael JA (2005) Regional landslide-hazard assessment for Seattle,Washington, USA. Landslide 2:266–279

    Article  Google Scholar 

  • Benda LE, Cundy TW (1990) Predicting deposition of debris flow in mountain channels. Can Geotech J 27:409–417

    Google Scholar 

  • Benda LE, Dunne T (1987) Sediment routing by debris flow. Int Assoc Hydrol Sci Pub 165:213–223

    Google Scholar 

  • Borga M, Dalla Fontana G, Da Ros D, Marchi L (1998) Shallow landslide hazard assessment using a physically based model and digital elevation data. Environ Geol 35(2–3):81–88

    Article  Google Scholar 

  • Brunsden D, Prior DB (1984) Slope instability. John Wiley, Chichester, 627 pp

  • Carrara AA (1983) Multivariate model for landslide hazard evaluation. Math Geol 15(3):403–426

    Article  Google Scholar 

  • Carrara ACM, Detti R, Guzzetti F, Pasqui V, Reichenbach P (1991) GIS techniques and statistical models in evaluating landslide hazard. Earth Surf Proc Land 16(5):427–445

    Article  Google Scholar 

  • Carson MA, Kirkby MJ (1972) Hillslope form and process. Cambridge University Press, Cambridge, 475 pp

  • Costa Nunes AJ (1969) Landslides in soils of decomposed rock due to intense rainstorms. In: Proc. VII international conference on soil mechanics and foundation engineering, Mexico, pp 547–554

  • De Ploey J, Cruz O (1979) Landslides in the Serra do Mar, Brazil. Catena 6:111–122

    Google Scholar 

  • Dietrich WE, Dunne T (1978) Sediment budget for a small catchment in mountainous terrain. Z Geomorphol 29:191–206

    Google Scholar 

  • Dietrich WE, Montgomery DR (1998) SHALSTAB: a digital terrain model for mapping shallow landslide potential. NCASI Technical Report, 29 pp

  • Dietrich WE, Wilson CJ, Montgomery DR, McKean J (1993) Analysis of erosion thresholds, channel networks and landscape morphology using a digital terrain model. J Geol 101:259–278

    Article  Google Scholar 

  • Dietrich WE, Reiss R, Hsu ML, Montgomery DR (1995) A process-based model for colluvium soil depth and shallow landsliding using digital elevation data. Hydrol Proc 9:383–400

    Article  Google Scholar 

  • Fernandes NF, Amaral CP (1996) Movimentos de massa: uma abordagem geológico-geomorfológica. In: Guerra AJT, Cunha SB (eds) Geomorfologia e Meio Ambiente. Ed. Bertrand, Rio de Janeiro, pp 123–194

  • Franzi L, Bianco G (2001) A statistical method to predict debris flow deposited volumes on a debris fan. Phys Chem Earth 26(9):683–688

    Google Scholar 

  • Gao J (1993) Identification of topographic settings conducive to landsliding from DEM in Nelson County, Virginia, U.S.A. Earth Surf Proc Land 18:579–591

    Article  Google Scholar 

  • GEORIO (1991) Mapa Indicativo do Risco de Escorregamentos no Município do Rio de Janeiro (CD-ROM)

  • GEORIO (1996) Estudos Geológicos-Geotécnicos a Montante dos Condomínios Capim Melado e Vilarejo, Jacarepaguá. Relatório Técnico, 96 pp

  • Ghilardi P, Natale L, Savi F (2001) Modeling debris flow propagation and deposition. Phys Chem Earth 26(9):651–656

    Google Scholar 

  • Glade T (2005) Linking debris-flow hazard assessments with geomorphology. Geomorphology 66:189–213

    Article  Google Scholar 

  • Gomes RAT, Guimarães RF, Carvalho Jr OA, Fernandes NF (2005) Análise de um modelo de previsão de deslizamentos (Shalstab) em diferentes escalas cartográficas. Rev Solos e Rocha 28(1):85–97

    Google Scholar 

  • Gramani M, Augusto Filho O (2004) Analysis of the triggering of debris flow potentiality and the run-out reach estimative: an application essay in the Serra do Mar mountain range. In: Proc. ninth international symposium on landslides, vol 1. Rio de Janeiro, Brasil, pp 1477–1483

  • Guidicini G, Nieble CM (1984) Estabilidade de taludes naturais e de escavação. Edgard Blücher, São Paulo, 142 pp

  • Guimarães RF, Montgomery DR, Greenberg HM, Fernandes NF, Gomes RAT, Carvalho Jr OA (2003) Parameterization of soil properties for a model of topographic controls on shallow landsliding: application to Rio de Janeiro. Eng Geol 69(1–2):99–108

    Article  Google Scholar 

  • Hollingsworth R, Kovacs GS (1981) Soil slumps and debris flows: prediction and protection. Bull Assoc Eng Geol 18:17–28

    Google Scholar 

  • Hungr O, Morgan GC, Kellerhalls R (1984) Quantitative analysis of debris torrent hazards for design of remedial measures. Can Geotech J 21:663–677

    Google Scholar 

  • IPT (1991) Ocupação de Encostas. Publicação IPT no 1831, 216 pp

  • Iverson RM (2000) Landslide triggering by rain infiltration. Water Resour Res 36(7):1897–1910

    Article  Google Scholar 

  • Iverson RM, Schilling SP, Vallance JW (1998) Objective delineation of lahar-inundation hazard zones. Geol Soc Am Bull 110:972–984

    Article  Google Scholar 

  • Larsen MC, Torres-Sanchez AJ (1998) The frequency and distribution of recent landslides in three montane tropical regions of Puerto Rico. Geomorphology 24:309–331

    Article  Google Scholar 

  • Montgomery DR (1994) Road surface drainage, channel initiation, and slope stability. Water Resour Res 30(6):1925–1932

    Article  Google Scholar 

  • Montgomery DR, Dietrich WE (1994) A physically based model for the topographic control on shallow landsliding. Water Resour Res 30:1153–1171

    Article  Google Scholar 

  • Montgomery DR, Sullivan K, Greenberg MH (1998) Regional test of a model for shallow landsliding. Hydrol Proc 12:943–955

    Google Scholar 

  • Montgomery DR, Wright RH, Booth T (1991) Debris flow hazard mitigation for colluvium-filled swales. Bull Assoc Eng Geol 28:303–323

    Google Scholar 

  • O’Brien JS, Julien PY (2000) Flo-2D. Users manual. Flo-engineering, Version 2000.01. Nutrioso, Arizona (EUA), 170 pp

  • Okimura T, Ichikawa R (1985) A prediction method for surface failures by movements of infiltrated water in a surface soil layer. Nat Disaster Sci 7:41–51

    Google Scholar 

  • O’Loughlin EM (1986) Prediction of surface saturation zones in natural catchments by topographic analysis. Water Resour Res 22:794–804

    Article  Google Scholar 

  • Pack RT, Tarboton DG, Goodwin CN (1998) Terrain stability mapping with SINMAP, technical description and users guide for version 1.00. Terratech Consulting Report 4114-0

  • Pasuto A, Soldati M (2004) An integrated approach for hazard assessment and mitigation of debris flows in the Italian Dolomites. Geomorphology 61:59–70

    Article  Google Scholar 

  • Rafaelli SG, Montgomery DR, Greenberg HM (2001) A comparison of thematic mapping of erosional intensity to GIS-driven process models in an Andean drainage basin. J Hydrol 244(1–2):33–42

    Article  Google Scholar 

  • Ramos VM, Guimarães RF, Redivo AL, Gomes RAT, Fernandes NF, Carvalho Jr OA (2002) Aplicação do modelo SHALSTAB, em ambiente Arcview, para o mapeamento de áreas susceptíveis a escorregamentos rasos na região do Quadrilátero Ferrífero – MG. Rev Espaço Geografia 5(1):49–67

    Google Scholar 

  • Reid ME, Iverson RM (1992) Gravity-driven groundwater flow and slope failure potential, effects of slope morphology, material properties, and hydraulic heterogeneity. Water Resour Res 28:939–950

    Article  Google Scholar 

  • Reneau SL, Dietrich WE (1987) The importance of hollows in debris-flow studies; examples from Marin County, California. In: Costa JE, Wieczorek GF (eds) Debris flow/avalanches: process, recognition, and mitigation. Reviews in Engineering Geology, vol 7. Geological Society of America, Boulder, pp 165–180

  • Savage WZ, Godt JW, Baum RL (2004) Modeling time-dependent aerial slope stability. In: Lacerda WA, Erlich M, Fontoura SAB, Sayao ASF (eds) Landslides-evaluation and stabilization. Proceedings of the 9th international symposium on landslides, vol 1. Balkema, London, pp 23–36

  • Selby MJ (1993) Hillslope materials & processes. Oxford University Press, New York, 450 pp

  • Silva Filho EP (1992) Movimentos de Massa na Vertente Sul Florestada do Maciço da Tijuca: Casos de Fevereiro/1988 nas Estradas Dona Castorina e Vista Chinesa. Dissertação de Mestrado. Departamento de Geografia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 227 pp

  • UN (1993) Working party on world landslide inventory. Bull IAEG 41:5–12

    Google Scholar 

  • van Asch T, Kuipers B, van Der Zanden DJ (1993) An information system for large scale quantitative hazard analyses of landslide. Z Geomorphol 87:133–140

    Google Scholar 

  • Vieira BC, Vieira ACF, Fernandes NF, Amaral CP (1996) Estudo comparativo dos movimentos de massa ocorridos em fevereiro de 1996 nas bacias do Quitite e Papagaio (RJ): Uma abordagem geomorfológica. In: Proc. II Pan–American Symposium on Landslides/II Conferência Brasileira Sobre Estabilidade de Encostas, vol 1. Rio de Janeiro, Brasil, pp 165–174

  • Wu W, Sidle RC (1995) A distributed slope stability model for steep forested basins. Water Resour Res 31(8):2097–2110

    Article  Google Scholar 

  • Zerkal SV, Zerkal OV (2004) Simulation flow landslides by particle method. In: Proc. Ninth international symposium on landslides, vol 1. Rio de Janeiro, Brasil, pp 1427–1432

Download references

Acknowledgements

The authors are grateful for financial support from the Fundação de Empreendimentos Científicos e Tecnológicos (FINATEC), Fundação Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq); and to Arthur M. C. Souza for his support in the writing of the English version of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato F. Guimarães.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gomes, R.A.T., Guimarães, R.F., Carvalho, O.A. et al. Identification of the affected areas by mass movement through a physically based model of landslide hazard combined with an empirical model of debris flow. Nat Hazards 45, 197–209 (2008). https://doi.org/10.1007/s11069-007-9160-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-007-9160-z

Keywords

Navigation