Skip to main content
Log in

Triggered Earthquakes on the Sambia Peninsula

  • Published:
Seismic Instruments Aims and scope Submit manuscript

Abstract

On September 21, 2004, the series of perceptible earthquakes occurred near the city of Kaliningrad. This series of seismic events affected not only the Sambia Peninsula, but also the entire Baltic region up to southern Sweden and eastern Denmark. The following events were recorded instrumentally: the foreshock with a magnitude of 5.0, the main shock with a magnitude of 5.3, and several aftershocks. The above magnitude estimates correspond to the highest values provided by various agencies. The magnitude estimates are conservative, but in this case it is even more difficult to explain the abnormally high intensities in some locations. Abnormally high seismic effects can be explained in only two ways: either the influence of the geological medium structure, or the occurrence of new earthquakes, which were triggered by the fore- and mainshock. The first assumption is not supported by the results of seismic microzoning, because the maximum amplification of seismic intensity was only 0.6 at two sites. To explain the observed intensity, such amplification is too weak. We attempted to find factual material confirming the possibility of earthquakes triggered by the fore- and mainshock. The article analyzes the distribution of seismic effects from the September 21, 2004 Kaliningrad earthquakes within Kaliningrad oblast. The observed intensities are compared with the calculated seismic effects in terms of the seismic intensity scale. As a result, it was found that the observed level of seismic effects significantly exceeds the calculated one and cannot be explained by the effects from the fore- and mainshock because of ground conditions. The macroseismic surveys in the territory of Kaliningrad oblast revealed excessively large cracks in the ground with significant horizontal movements along them and an anomalous lowering of the water level in a pond near the village of Veselovka, despite the torrential rains the day before. According to the macroseismic data, the average value of the attenuation coefficient for the region under consideration was b ≈ 2.7, which is significantly lower than the world average. The acquired data gave us grounds to hypothesize about certain earthquakes that accounted for the anomalously high seismic effects in Kaliningrad oblast: these seismic events were triggered by the fore- and mainshock of the 2004 Kaliningrad earthquakes, but were not recorded by seismic stations. A conclusion is drawn about the stress state of the crust beneath the Sambia Peninsula. Therefore, trigger earthquakes are quite possible here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Adushkin, V.V., Blasting-induced seismicity in the European part of Russia, Izv., Phys. Solid Earth, 2013, vol. 49, pp. 258–277.  https://doi.org/10.1134/S1069351313010023

    Article  Google Scholar 

  2. Adushkin, V.V., Spivak, A.A., and Dubinya, M.G., Seismic phenomena induced by underground nuclear explosion, Navedennaya seismichnost’ (Induced Seismicity), Moscow: Nauka, 1994, pp. 199–206.

    Google Scholar 

  3. Adushkin, V.V., Loktev, D.N., and Spivak, A.A., The effect of baric disturbances in the atmosphere on microseismic processes in the crust, Izv., Phys. Solid Earth, 2008, vol. 44, pp. 510–517.  https://doi.org/10.1134/S1069351308060086

    Article  Google Scholar 

  4. Aleshin, A.S., Aptikaev, F.F., Nikonov, A.A., and Pogrebchenko, V.V., Discrepancy in location of macroseismically and instrumentally derived epicenters of Kaliningrad, September 21, 2004, earthquake–Factual data and possible explanations, Int. Workshop Seismicity and Seismological Observations of the Baltic Sea Region and Adjacent Territories, Vilnius, 2007.

  5. Aleshin, A.S., Aptikaev, F.F., Nikonov, A.A., and Pogrebchenko, V.V., On the possible reasons of discrepancies in the determination of epicenters of the main quakes of the Kaliningrad earthquake on September 21, 2004, Geofiz. Issled., 2009, vol. 10, no. 3, pp. 59–76.

    Google Scholar 

  6. Aleshin, A.S., Anosov, G.I., Bessarab, F.S., Drobiz, M.V., Dement’ev, Yu.V., Pogrebchenko, V.V., Rogal’, L.A., Skvortsov, A.G., Tsarev, A.M., and Chugaevich, V.Ya., Seismic microzoning of the territory of Kaliningrad, Inzh. Izyskaniya, 2014, nos. 9–10, pp. 68–79.

  7. Anderson, J.G., Brune, J.N., Louie, J.N., Zeng, Y., Savage, M., Guang, Y., Chen, Q., and dePolo, D., Seismicity in the western Great Basin apparently triggered by the Landers, California, earthquake, 28 June 1992, Bull. Seismol. Soc. Am., 1994, vol. 84, no. 3, pp. 863–891.  https://doi.org/10.1785/BSSA0840030863

    Article  Google Scholar 

  8. Aptikaev, F.F., Instrumental’naya shkala seismicheskoi intensivnosti (Instrumental Scale of Seismic Activity), Moscow: Nauka i Obrazovanie, 2012.

  9. Aptikaev, F.F., Nikonov, A.A., Alyoshin, A.S., Assinovskaya, B.A., Pogrebchenko, V.V., and Erteleva, O.O., Kaliningrad earthquake of September 21, 2004, damage, Int. Conf. on Earthquake Engineering EE-21C to Mark 40 Years of IZIIS, Skopje, 2005.

  10. Aptikaev, F.F., Aleshin, A.S., Nikonov, A.A., Pogrebchenko, V.V., Erteleva, O.O., and Assinovskaya, B.A., Macroseismic evidences of the 2004 Kaliningrad earthquake, Georisk, 2019, vol. 13, no. 3, pp. 40–59.  https://doi.org/10.25296/1997-8669-2019-13-3-40-59

    Article  Google Scholar 

  11. Assinovskaya, B.A., Northern-western part of the Kaliningrad oblast. Curonian spit, Kaliningradskoe zemletryasenie 21 sentyabrya 2004 goda (Kaliningrad September 21, 2004, Earthquake), St. Petersburg: VSEGEI, 2009, pp. 88–97.

    Google Scholar 

  12. Assinovskaya, B.A. and Nikonov, A.A., Sensible earthquakes of the 20th century in the eastern part of the Baltic Shield, Problemy geodinamiki, seismichnosti i mineragenii podvizhnykh poyasov i platformennykh oblastei litosfery. Materialy mezhdunarodnoi konferentsii (Problems of Geodynamics, Seismicity, and Minerageny of Moving Belts and Platform Regions of Lithosphere: Materials of Int. Conf.), Yekaterinburg, 1998, pp. 14–15.

  13. Assinovskaya, B.A. and Ovsov, M.K., Seismotectonic position of the Kaliningrad September 21, 2004, earthquake, Izv., Phys. Solid Earth, 2008, vol. 44, pp. 717–727.  https://doi.org/10.1134/S1069351308090036

    Article  Google Scholar 

  14. Avsyuk, Yu.N., Prilivnye sily i prirodnye protsessy (Tidal forces and Natural Processes), Moscow: Inst. Fiz. Zemli Shmidta Ross. Akad. Nauk, 1996.

  15. Avsyuk, Yu.N., Studying the tidal evolution of the Earth–Moon system and its appearances in geodynamics, Materialy konferentsii Simpozium i shkola “Sinergetika geosistem” (Materials of Conf. Symp. and School on Synergistics of Geosystem), Moscow, 2007, Moscow: Inst. Geol. Rudnykh Mestorozhdenii Ross. Akad. Nauk, 2007, pp. 9–11.

    Google Scholar 

  16. Bakun, W.H. and Scotti, O., Regional intensity attenuation models for France and the estimation of magnitude and location of historical earthquakes, Geophys. J. Int., 2006, vol. 164, pp. 596–610.  https://doi.org/10.1111/j.1365-246X.2005.02808.x

    Article  Google Scholar 

  17. Bodin, P. and Gomberg, J., Triggered seismicity and deformation between the Landers, California, and Little Skull Mountain, Nevada, earthquakes, Bull. Seismol. Soc. Am., 1994, vol. 84, no. 3, pp. 835–843.  https://doi.org/10.1785/BSSA0840030835

    Article  Google Scholar 

  18. Bossu, R., Grasso, J.R., Plotnikova, L.M., Nurtaev, B., Fréchet, J., and Moisy, M., Complexity of intracontinental seismic faultings: the gazli, uzbekistan, sequence, Bull. Seismol. Soc. Am., 1996, vol. 86, no. 4, pp. 959–971.  https://doi.org/10.1785/BSSA0860040959

    Article  Google Scholar 

  19. Bykov, V.G., Development of sliding regimes in faults and slow strain waves, Phys. Mesomech., 2020, vol. 23, pp. 271–278.  https://doi.org/10.1134/S1029959920030121

    Article  Google Scholar 

  20. Chen, L., Chen, J.G., and Xu, Q.H., Correlations between solid tides and worldwide earthquakes M s ≥ 7.0 since 1900, Nat. Hazards Earth Syst. Sci., 2012, vol. 12, pp. 587–590.  https://doi.org/10.5194/nhess-12-587-2012

    Article  Google Scholar 

  21. Chubarov, D.L. and Kochnev, V.A., Calculation and analysis of trigger effect of tidal forces on the largest earthquakes, Izv. Tomskogo Politekh. Univ. Inzhiniring Georesursov, 2016, vol. 327, no. 2, pp. 59–64.

    Google Scholar 

  22. Deshcherevskaya, E.V. and Sidorin, A.Ya., Some results of studying the diurnal periodicity of earthquakes of the Garm test site, Seism. Prib., 2004, vol. 40, pp. 57–70.

    Google Scholar 

  23. Earthquakes Induced by Underground Nuclear Explosions: Environmental and Ecological Problems, Console, R. and Nikolaev, A., Ed., NATO ASI Series, vol. 4, Berlin: Springer, 2012.  https://doi.org/10.1007/978-3-642-57764-2

    Book  Google Scholar 

  24. Emanov, A.F. and Emanov, A.A., Seismic monitoring of technogenic impact on the territory of Western Siberia, Seismostoikoe Stroit. Bezop. Sooruzh., 2019, no. 4, pp. 48–53.

  25. Emanov, A.F., Emanov, A.A., Fateev, A.V., Leskova, E.V., Shevkunova, E.V., and Podkorytova, V.G., Mining-induced seismicity at open pit mines in Kuzbass (Bachatsky earthquake on June 18, 2013), J. Min Sci., 2014, vol. 50, pp. 224–228.  https://doi.org/10.1134/S1062739114020033

    Article  Google Scholar 

  26. Gabsatarova, I.P., Starovoit, O.E., and Chepkunas, L.S., Kaliningrad, September 21, 2004, earthquake, Stroenie, geodinamika i mineragenicheskie protsessy v litosfere (Structure, Geodynamics, and Mineragenic Processes in Lithosphere), Syktyvkar: Geoprint, 2005, pp. 58–60.

  27. Gabsatarova, I.P., Chepkunas, L.S., Babkova, E.A., Malyanova, L.S., and Ryzhikova, M.I., Kaliningrad, September 21, 2004, earthquakes with M w = 4.6 and 4.8, I 0 = 6 and I 0 = 6–7 (Western Russia), Zemletryaseniya Severnoi Evrazii (Earthquakes of Northern Eurasia), Obninsk, Moscow oblast: Geofiz. Sluzhba Ross. Akad. Nauk, 2010, pp. 343–363.

  28. Gahalaut, V.K., Gahalaut, K., Catherine, J.K., Sreejith, K.M., Agrawal, R., Yadav, R.K., Mohanalakshmi, C., Naidu, M.S., and Rao, R.V., Geodetic constraints on tectonic and anthropogenic deformation and seismogenesis of Koyna-Warna Region, India, Bull. Seismol. Soc. Am., 2018a, vol. 108, no. 5B, pp. 2933–2942.  https://doi.org/10.1785/0120170373

    Article  Google Scholar 

  29. Gahalaut, K., Gupta, S., Gahalaut, V.K., and Mahesh, P., Influence of tehri reservoir impoundment on local seismicity of Northwest Himalaya, Bull. Seismol. Soc. Am., 2018b, vol. 108, no. 5B, pp. 3119–3125.  https://doi.org/10.1785/0120180077

    Article  Google Scholar 

  30. Garagash, I.A., Ingel, L.Kh., and Yaroshevich, M.I., A possible mechanism of atmospheric effects on seismic activity near ocean coasts, Izv., Phys. Solid Earth, 2004, vol. 40, no. 8, pp. 692–697.

    Google Scholar 

  31. Gohberg, M.B. and Kolosnitsyn, N.I., Trigger mechanisms of earthquakes, Triggernye effekty v geosistemakh. Materialy Vserossiiskogo seminara-soveshchaniya (Trigger Effects in Geosystems. Materials of All-Russian Workshop-Conference), Moscow, 2010, Adushkin, V.V. and Kocharyan, G.G., Eds., Moscow: GEOS, 2010, pp. 52–62.

    Google Scholar 

  32. Goldin, S.V., Timofeev, V.Yu., Raumbeke, M., Ardyukov, D.G., Lavrentiev, M.E., and Sedusov, R.G., Tidal modulation of low seismicity in Southern Siberia, Fiz. Mezomekh., 2008, vol. 11, no. 4, pp. 81–93.

    Google Scholar 

  33. Gomberg, J., Stress/strain changes and triggered seismicity following the M w7.3 Landers, California, earthquake, J. Geophys. Res., 1996, vol. 101, no. B1, pp. 751–764.  https://doi.org/10.1029/95JB03251

    Article  Google Scholar 

  34. Gomberg, J., Bodin, P., Larson, K., and Dragert, H., Earthquake nucleation by transient deformations caused by the m = 7.9 denali, alaska, earthquake, Nature, 2004, vol. 427, pp. 621–624.  https://doi.org/10.1038/nature02335

    Article  Google Scholar 

  35. Gordeev, E.I., Saltykov, V.A., Sinitsyn, V.I., and Chebrov, V.N., Effect of Earth surface heating on high-frequency seismic noise, Dokl. Akad. Nauk SSSR, 1991, vol. 316, no. 1, pp. 85–88.

    Google Scholar 

  36. Gorshkov, V.L., On the pole tide triggering of the Earth’s seismicity, Vestn. S.-Peterb. Univ., Ser. 1: Mat., Mekh., Astron., 2015, vol. 2, no. 4, pp. 646–656.

    Google Scholar 

  37. GOST R (State Standard) 57546.2017: Earthquakes: Scale of Seismic Intensity, 2017.

  38. Gregersen, S., Mäntyniemi, P., Nikonov, A.A., Aptikaev, F.F., Aleshin, A.S., Assinovskaya, B.A., Pogrebchenko, V.V., Guterch, B., Nikulin, V., Pacesa, A., Wahlstrom, R., Schweitzer, J., Kulhanek, O., Holmquist, C., Heinloo, O., and Puura, V., Felt reports at large distances of the earthquakes in non-seismic Kaliningrad in West Russia, The Kaliningrad Earthquake September, 2005, vol. 21, no. 2004, pp. 11–12.

  39. Gupta, H.K., Review: reservoir triggered seismicity (RTS) at Koyna, India, over the past 50 yrs, Bull. Seismol. Soc. Am., 2018, vol. 108, no. 5B, pp. 2907–2918.  https://doi.org/10.1785/0120180019

    Article  Google Scholar 

  40. Gupta, H.K., Arora, K., Purnachandra Rao, N., Roy, S., Tiwari, V.M., Patro, P.K., Satyanarayana, H.V.S., Shashidhar, D., Mahato, C.R., and Srinivas, K.N.S.S., Srihari, M., Satyavani, N., Srinu, Y., Gopinadh, D., Raza, H., Jana, M., Akkiraju, V.V., Goswami, D., Vyas, D., Dubey, C.P., Raju, D.Ch.V., Borah, U., Raju, K., Reddy, K.C., Babu, N., Bansal, B.K., and Nayak, S., Investigations of continued reservoir triggered seismicity at Koyna, India, Geol. Soc. Spec. Publ., 2017, vol. 445, no. 1, pp. 151–188.  https://doi.org/10.1144/SP445.11

    Article  Google Scholar 

  41. Heaton, T.H., Tidal triggering of earthquakes, Geophys. J. R. Astr. Soc., 1975, no. 43, pp. 307–326.  https://doi.org/10.1111/j.1365-246X.1975.tb00637.x

  42. Heimisson, E.R. and Avouac, J.-P., Analytical prediction of seismicity rate due to tides and other oscillating stresses, Geophys. Rev. Lett., 2020, vol. 47, no. 23, p. e2020GL090827.  https://doi.org/10.1029/2020GL090827

  43. Hill, D.P., Reasenberg, R.A., Michael, A., Arabaz, W.J., Beroza, G., Brumbaugh, D., Brune, J.N., Castro, R., Davis, S., Ellsworth, W.L., Gomberg, J., Harmsen, S., House, L., Jackson, S.M., Johnston, M.J.S., Jones, L., Keller, R., Malone, S., Munguia, L., Nava, S., Pechmann, J.C., Sanford, A., Simpson, R.W., Smith, R.B., Stark, M., Stickney, M., Vidal, A., Walter, S., Wong, W., and Zollweg, J., Seismicity remotely triggered by the magnitude 7.3 Landers, California, earthquake, Science, 1993, vol. 260, pp. 1617–1623.  https://doi.org/10.1126/science.260.5114.1617

    Article  Google Scholar 

  44. Kaliningradskoe zemletryasenie 21 sentyabrya 2004 goda (Kaliningrad Earthquake on September 21, 2004), Assinovskaya, B.A., Koff G.L., and Kotlov V.F., Eds., St. Petersburg: VSEGEI, 2009, p. 388.

    Google Scholar 

  45. Khachiyan, E.E., Spitakskoe zemletryasenie 7 dekabrya 1988 goda (k tridtsatiletiyu zemletryaseniya) (Spitak Earthquake on December 7, 1988 (to the 30th Anniversary of the Earthquake)), Yerevan: Naapet, 2018.

  46. Knopoff, L., Earth tides as a triggering mechanism for earthquake, Bull. Seismol. Soc. Am., 1964, vol. 54, no. 6A, pp. 1865–1870.  https://doi.org/10.1785/BSSA05406A1865

    Article  Google Scholar 

  47. Kocharyan, G.G., Markov, V.K., Markov, D.V., Pavlov, D.V., and Pernik, L.M., Mechanics of variation in the deformation regime of fault zones by dynamic impacts, Triggernye effekty v geosistemakh. Materialy Vserossiiskogo seminara-soveshchaniya (Trigger Effects in Geosystems: Materials of All-Russian Workshop-Conference), Moscow, 2010, Adushkin, V.V. and Kocharyan, G.G., Eds., Moscow, 2010, pp. 62–70.

    Google Scholar 

  48. Kolosova, E.A., Lukk, A.A., Serova, O.A., and Sidorin, A.Ya., Natural and technogenic origins of trigger effects in seismicity and seismic noise, Nauka Tekhnol. Razrab., 2015, vol. 94, no. 4, pp. 30–43.

    Google Scholar 

  49. Kolvankar, V.G., More, S., and Thakur, N., Earth tides and earthquakes. new concepts, New Concepts Glob. Tectnon. Newsl., 2010, no. 57, pp. 54–84.

  50. Kremenetskaya, E.O. and Trjapitsin, V.M., Induced seismicity in the Khibiny Massif (Kola Peninsula), Pure Appl. Geophys., 1995, vol. 145, pp. 29–37.  https://doi.org/10.1007/BF00879481

    Article  Google Scholar 

  51. Kuzmin, Yu.O., Deformation autowaves in fault zones, Izv., Phys. Solid Earth, 2012, vol. 48, pp. 1–16. https://doi.org/10.1134/S1069351312010089

    Article  Google Scholar 

  52. Kuzmin, Yu.O., Recent geodynamics and slow deformation waves, Izv., Phys. Solid Earth, 2020, vol. 56, pp. 595–603.  https://doi.org/10.1134/S1069351320040059

    Article  Google Scholar 

  53. Lavecchia G., de Nardis R., Ferrarini F., Cirillo D., Bello S., Brozzetti F. Regional seismotectonic zonation of hydrocarbon fields in active thrust belts: A case study from Italy, Building Knowledge for Geohazard Assessment and Management in the Caucasus and other Orogenic Regions, Bonali F.L., Pasquare Mariotto F., and Tsereteli N., Eds., NATO Science for Peace and Security. Ser. C: Environmental Security, Dordrecht: Springer, 2021, pp. 89–128.  https://doi.org/10.1007/978-94-024-2046-3_7

  54. Lovchikov, A.V., Anthropogenic seismicity at development of Lovoozero rare-metal sediment, Triggernye effekty v geosistemakh. Materialy IV Vserossiiskoi konferentsii s mezhdunarodnym uchastiem (Trigger Effects in Geosystems: Materials of the Fourth All-Russian Conf. with Int. Participation), Moscow, 2017, Adushkin, V.V. and Kocharyan, G.G., Eds., Moscow: GEOS, 2017.

  55. Malovichko, A.A., Mekhryushev, D.Yu., Starovoit, O.E., Gabsatarova, I.P., and Chepkunas, L.S., On Kaliningrad earthquakes on September 21, 2004, and development of seismic monitoring in Kaliningrad oblast, Sovremennye metody obrabotki i interpretatsii seismologicheskikh dannykh. Materialy Mezhdunarodnoi seismologicheskoi shkoly, posvyashchennoi 100-letiyu otkrytiya seismicheskikh stantsii Pulkovo (Modern Methods for Processing and Interpreting Seismological Data: Materials of Int. Seismological School Devoted to 100th Anniversary of Opening Pulkovo Seismic Station), Yekaterinburg: Obninsk, 2006, pp. 89–97.

  56. Malovichko, A.A., Gabsatarova, I.P., and Chepkunas, L.S., Kaliningrad earthquakes on September 21, 2004, Zemletryaseniya i mikroseismichnost’ v zadachakh sovremennoi geodinamiki Vostochno-Evropeiskoi platformy, vol. 1: Zemletryaseniya (Earthquakes and Microseismicity in Problems of Modern Geodynamics in the Eastern-European Platform, vol. 1: Earthquakes), Petrozavodsk: Karelskii Nauch. Tsentr Ross. Akad. Nauk, 2007, pp. 49–55.

    Google Scholar 

  57. McGarr A, Simpson D., Seeber L. Case histories of induced and triggered seismicity, Int. Geophys., vol. 81, Part A, pp. 647–661. https://doi.org/10.1016/S0074-6142(02)80243-1

  58. McGarr, A., On a possible connection between three major earthquakes in California and oil production, Bull. Seismol. Soc. Am., 1991, vol. 81, no. 3, pp. 948–970.  https://doi.org/10.1785/BSSA0810030948

    Article  Google Scholar 

  59. Métivier, L., Viron, O., Conrad, C.P., Renault, S., Diament, M., and Patau, G., Evidence of earthquake triggering by the solid earth tides, Earth Planet. Sci. Lett., 2009, vol. 278, nos. 3–4, pp. 370–375.  https://doi.org/10.1016/j.epsl.2008.12.024

    Article  Google Scholar 

  60. Mikhailov, V.O., Arora, K., Ponomarev, A.V., Srinagesh, D., Smirnov, V.B., and Chadha, R., Reservoir induced seismicity in the Koyna–Warna region, India: Overview of the recent results and hypotheses, Izv., Phys. Solid Earth, 2017, vol. 53, pp. 518–529.  https://doi.org/10.1134/S1069351317030041

    Article  Google Scholar 

  61. Mirzoev, K.M., Negmatullaev, S.Kh., Simpson, D., and Soboleva, O.V., Vozbuzhdennaya seismichnost’ v raione vodokhranilishcha Nurekskoi GES (Induced Seismicity near Water Storage Reservoir of Nurek Hydro-Electric Station), Dushanbe: Donish, 1987.

  62. Moran, S.C., Power, J.A., Stihler, S.D., Sanchez, J.J., and Caplan-Auerbach, J., Earthquake triggering at Alaskan volcanoes following the 3 November 2002 Denali fault earthquake, Bull. Seismol. Soc. Am., 2004, vol. 94, no. 6B, pp. 300–S309.  https://doi.org/10.1785/0120040608

    Article  Google Scholar 

  63. Nersesov, I.L. and Latynina, L.A., Strain processes before the Spitak earthquake, Tectonophysics, 1992, vol. 202, nos. 2–4, pp. 221–225.  https://doi.org/10.1016/0040-1951(92)90105-F

    Article  Google Scholar 

  64. Nikolaev, A.V. and Vereshchagina, G.M., On the initiation of earthquakes by earthquakes, Dokl. Akad. Nauk SSSR, 1991, vol. 318, no. 2, pp. 320–324.

    Google Scholar 

  65. Nikolaev, A.V., Initiation of earthquakes by underground nuclear explosions, Vestn. Ross. Akad. Nauk, 1993, vol. 36, no. 2, pp. 113–116.

    Google Scholar 

  66. Nikolaev, V.A., Spatial-temporal features of the relation between strong earthquakes and tidal phases, Navedennaya seismichnost’ (Induced Seismicity), Nikolaeva, A.V. and Galkina, I.N., Eds., Moscow: Nauka, 1994, pp. 103–114.

    Google Scholar 

  67. Nikolaevskii, V.N., Elasto-viscous models of tectonic and seismic waves in lithosphere, Fiz. Zemli, 2008, no. 6, pp. 92–96.

  68. Nikonov, A.A., Source mechanism of the Kaliningrad earthquake on September 21, 2004, Dokl. Earth Sci., 2006, vol. 407, pp. 317–320.  https://doi.org/10.1134/S1028334X06020371

    Article  Google Scholar 

  69. Nikonov, A.A., Surface disturbances connected with the Kaliningrad earthquake of September 21, 2004, and their correlation with macroseismic scales, Seism. Instrum., 2011, vol. 47, p. 148.  https://doi.org/10.3103/S074792391102006X

    Article  Google Scholar 

  70. Nikonov, A.A., Aptikaev, F.F., Aleshin, A.S., Assinovskaya, B.A., Pogrebchenko, V.V., and Ponomareva, O.N., Kaliningrad earthquake of September 21, 2004. Macroseismic data for near and mesoseismal zones, The Kaliningrad Earthquake September 21, 2004 Workshop Materials, Tartu: Inst. of Geology, Univ. of Tartu, 2005, pp. 26–29.

    Google Scholar 

  71. Nikonov, A.A., Aptikaev, F.F., Aleshin, A.S., Assinovskaya, B.A., and Pogrebchenko, V.V., Kaliningrad earthquake of September 21, 2004, as model earthquake for Eastern European Platform, Geofizika XXI veka: 2005 god. Trudy IX Chtenii im. V.V. Fedynskogo (Geophysics of 21st Century, 2005: Treatises of 9th Readings named after V.V. Fedynskii), Moscow: Nauchnyi Mir, 2006, pp. 282–289.

    Google Scholar 

  72. Nikonov, A.A., Pacesa, A., Aptikaev, F.F., Nikulin, V.G., Puura, V., and Aronov, A.G., Kaliningrad September 21, 2004, earthquake in the Eastern Baltic Sea area—Basic macroseismic maps for three main shocks, Int. Workshop on Seismicity and Seismological Observations of the Baltic Sea Region and Adjacent Territories, Vilnius, 2007, Vilnius: LGT, 2007.

  73. Nikulin, V., Estimations of seismic effects in Latvia from the Kaliningrad earthquake of September 21, 2004, The Kaliningrad Earthquake September 21, 2004 Workshop Materials, Tartu: Inst. of Geology, Univ. of Tartu, 2005, pp. 30–31.

    Google Scholar 

  74. Operational seismological catalog, September 2004, Geophysical Survey of the Russian Academy of Sciences. Experimental-methodological expedition, Obninsk, 2004. http://www.gsras.ru/ftp/Teleseismic_Catalog/2004/ 04m09.txt. Cited June 11, 2021.

  75. Pacesa, A., Sliaupa, S., and Lazauskiene, J., Compilation of macroseismic data of Kaliningrad earthquakes and perspectives of seismological investigation in Lithuania, Geol. Akiraciai, 2005, vol. 2, no. 58, pp. 46–53.

    Google Scholar 

  76. Pankow, K.L., Arabasz, W.J., Pechmann, J.C., and Nova, S.J., Triggered seismicity in Utah from the 3 November 2002 Denali fault earthquake, Bull. Seismol. Soc. Am., 2004, vol. 94, no. 6B, pp. S332–S347.  https://doi.org/10.1785/0120040609

    Article  Google Scholar 

  77. Petrov, L. and Boy, J.-P., Study of the atmospheric pressure loading signal in very long baseline interferometry observations, J. Geophys. Res., 2004, vol. 109, p. B03405.  https://doi.org/10.1029/2003JB002500

    Article  Google Scholar 

  78. Piruzyan, S.A. and Kroonenberg, S.B., Effects of multifocus earthquakes on seismic motion, Seism. Instrum., 2011, vol. 47, no. 2, pp. 116–135.  https://doi.org/10.3103/S0747923911020071

    Article  Google Scholar 

  79. Rebetskii, Yu.L., Mechanism of generation of tectonic stresses caused by gravity forces, plastic flow, and vertical displacements, Devyatye geofizicheskie chteniya Fedynskogo. Tez. dokladov (Fedynskii Ninth Geophysical Readings: Lecture Notes), Moscow: GEOS, 2007a.

    Google Scholar 

  80. Rebetskii, Yu.L., Tectonic stresses and zones of earthquake triggering, Fiz. Mezomekh., 2007b, vol. 10, no. 1, pp. 25–37.

    Google Scholar 

  81. Safonov, Yu.G., Trigger effects in endogenous ore-forming systems (on an examples of gold deposit), Triggernye effekty v geosistemakh. Materialy IV Vserossiiskoi konferentsii s mezhdunarodnym uchastiem (Trigger Effects in Geosystems: Materials of the Fourth All-Russian Conf. with Int. Participation), Moscow, 2017, Adushkin, V.V. and Kocharyan, G.G., Eds., Moscow: GEOS, 2017.

  82. Shen, Z.-K., Wang, Q., Bürgmann, R., Wan, Y., and Ning, J., Pole-tide modulation of slow slip events at circum-Pacific subduction zones, Bull. Seismol. Soc. Am., 2005, vol. 95, no. 5, pp. 2009–2015.  https://doi.org/10.1785/0120050020

    Article  Google Scholar 

  83. Sherman, S.I., Deformation waves as a trigger mechanism of seismic activity in seismic zones of the continental lithosphere, Geodin. Tektonofiz., 2013, vol. 4, no. 2, pp. 83–117.  https://doi.org/10.5800/GT-2013-4-2-0093

    Article  Google Scholar 

  84. Shlien, S., Earthquake-tide correlation, Geophys. J. R. Astr. Soc., 1972, vol. 28, pp. 27–34.  https://doi.org/10.1111/j.1365-246X.1972.tb06108.x

    Article  Google Scholar 

  85. Sidorin, A.Ya., Technogenic effects in the seismicity of the Kurpsai and Toktogul reservoir regions, Seism. Instrum., 2015, vol. 51, pp. 300–310.  https://doi.org/10.3103/S0747923915040064

    Article  Google Scholar 

  86. Simpson, D. and Negmatullaev, S.K., Induced seismicity at Nurek Reservoir, Tajikistan, USSR, Bull. Seismol. Soc. Am., 1981, vol. 71, no. 5, pp. 1561–1586.  https://doi.org/10.1785/BSSA0710051561

    Article  Google Scholar 

  87. Sliaupa, S. and Pacesa, A., Macroseismic observations and instrumental recording of Kaliningrad earthquakes 2004.09.21 in Lithuania, Kaliningrad Earthquake September 21, 2004 Workshop Materials, Jõeleht, A., Ed., Tartu: Univ. of Tartu, 2004, pp. 11–12.

    Google Scholar 

  88. Smirnov, V.B., Mikhailov, V.O., Ponomarev, A.V., Arora, K., Chadkha, R.K., Srinagesh, D., and Potanina, M.G., On the dynamics of the seasonal components of induced seismicity in the Koyna–Warna region, Western India, Izv., Phys. Solid Earth, 2018, vol. 54, no. 4, pp. 632–640.  https://doi.org/10.1134/S1069351318040109

    Article  Google Scholar 

  89. Smith, K.D., Brune, J.N., Savage, M.K., Anooshehpoor, R., and Sheehan, A.F., The 1992 Little Skull mountain earthquake sequence, Southern Nevada test site, Bull. Seismol. Soc. Am., 2001, vol. 91, no. 6, pp. 1595–1606.  https://doi.org/10.1785/0120000089

    Article  Google Scholar 

  90. Sobolev, G., Spetzler, H., Koltsov, A., and Chelidze, T., An experimental study of triggered stick-slip, Pure Appl. Geophys., 1993, vol. 140, pp. 79–94.  https://doi.org/10.1007/BF00876872

    Article  Google Scholar 

  91. Sobolev G.A., Ponomarev A.V., Koltsov A.V., Smirnov V.B. Simulation of triggered earthquakes in the laboratory, Induced Seismic Events, Knoll, P. and Kowalle, G., Eds., Pageoph Topical Volumes, Basel: Birkhäuser, 1996, pp. 345–355.  https://doi.org/10.1007/978-3-0348-9204-9_10

    Book  Google Scholar 

  92. Sobolev, G.A., Zakrzhevskaya, N.A., Sobolev, D.G., and Petrov, V.A., The occurrence of trigger effects in regional seismicity, J. Volcanol. Seismol., 2017, vol. 11, no. 2, pp. 103–112.  https://doi.org/10.1134/S0742046317020075

    Article  Google Scholar 

  93. Sorrells, G.G. and McDonald, J.A., Der, Z.A., and Herrin, E., Earth motion caused by local atmospheric pressure changes, Geophys. J. R. Astr. Soc., 1971, vol. 26, pp. 83–98.  https://doi.org/10.1111/j.1365-246X.1971.tb03384.x

    Article  Google Scholar 

  94. SP 14.13330.2018: Building in seismic zones, 2018.

  95. SP 286.1325800.2016: Building objects of higher responsibility. Rules of detailed zoning, 2017.

  96. Tanaka, S., Ohtake, M., and Sato, H., Evidence for tidal triggering of earthquakes as revealed from statistical analysis of global data, J. Geophys. Res., 2002, vol. 107, no. B10, pp. ESE 1-1–ESE 1-11.  https://doi.org/10.1029/2001JB001577

  97. Tarasov, N.T. and Tarasova, N.V., Geodynamic consequences of trigger influences of electromagnetic fields and explosions on seismicity, Inzh. Fiz., 2019a, no. 8, pp. 50–57. https://doi.org/10.25791/infizik.08.2019.813

  98. Tarasov, N.T. and Tarasova, N.V., Influence of electromagnetic fields and explosions on seismicity, geodynamic consequences, Triggernye effekty v geosistemakh. Materialy V Vserossiiskoi konferentsii s mezhdunarodnym uchastiem (Trigger Effects in Geosystems: Materials of the Fifth Conf. With Int. Participation), Moscow, 2019, Adushkin, V.V and Kocharyan, G.G, Eds., Moscow: TORUS PRESS, 2019b, pp. 113–122.

  99. Triggernye effekty v geosistemakh. Materialy IV Vserossiiskoi konferentsii s mezhdunarodnym uchastiem (Trigger Effects in Geosystems: Materials of the Fourth All-Russian Conf. with Int. Participation), Moscow, 2017, Adushkin, V.V. and Kocharyan, G.G., Eds., Moscow: GEOS, 2017.

    Google Scholar 

  100. Triggernye effekty v geosistemakh. Materialy V Vserossiiskoi konferentsii s mezhdunarodnym uchastiem (Trigger Effects in Geosystems: Materials of the Fifth All-Russian Conf. with Int. Participation), Moscow, 2019, Adushkin, V.V. and Kocharyan, G.G., Eds., Moscow: Torus Press, 2019.

    Google Scholar 

  101. Vergos, G., Arabelos, D.N., and Contadakis, M.E., Evidence for tidal triggering on the earthquakes of the Hellenic Arc, Greece, Phys. Chem. Earth, Parts A/B/C, 2015, vos. 85–86, pp. 210–215.  https://doi.org/10.1016/j.pce.2015.02.004

  102. Wang, S. and Zhang, Z., Plastic flow waves (‘slow waves’) and seismic activity in Central Eastern Asia, Seismol. Geol., 2004, vol. 26, no. 1, pp. 91–101.

    Google Scholar 

  103. West, M., Sánchez, J.J., and McNutt, S.R., Periodically triggered seismicity at Mount Wrangell, Alaska, after the Sumatra earthquake, Science, 2005, vol. 308, pp. 1144–1146.  https://doi.org/10.1126/science.1112462

    Article  Google Scholar 

  104. Wiejacz, P., Preliminary investigation of the September 21, 2004 earthquakes of Kaliningrad Region, Russia, Acta Geophys. Pol., 2004, vol. 52, pp. 425–441.

    Google Scholar 

  105. Wiejacz, P., The Kaliningrad earthquake of September 21, 2004, Acta Geodyn. Geomater., 2006, vol. 3, no. 2, pp. 425–441.

    Google Scholar 

  106. Wiejacz, P. and Debski, W., Kaliningrad earthquakes of September 21, 2004, The Kaliningrad earthquake September 21, 2004 Workshop Materials, Tartu: Univ. of Tartu, 2005a, pp. 44–52.

  107. Wiejacz, P. and Dębski, W., The earthquakes in Kaliningrad Region, 21 September 2004, Prz. Geof., 2005b, vol. 50, pp. 77–90.

    Google Scholar 

  108. Yadav, A., Gahalaut, K., Rao, N.P., Role of reservoirs in sustained seismicity of Koyna-Warna region—a statistical analysis, J. Seismol., 2018, vol. 22, no. 4, pp. 909–920.  https://doi.org/10.1007/s10950-018-9741-1

    Article  Google Scholar 

  109. Zakrzhevskaya, N.L. and Sobolev, G.A., On the seismicity effect of magnetic storms, Izv., Phys. Solid Earth, 2002, vol. 38, no. 4, pp. 249–261.

    Google Scholar 

  110. Zhuravlev, V.I. and Lukk, A.A., The pattern of diurnal periodicity of weak earthquakes in Iran, Izv., Phys. Solid Earth, 2012, no. 1, pp. 61–77.  https://doi.org/10.1134/S1069351311120111

Download references

Funding

The work was carried out under the state task of the Schmidt Institute of Physics of the Earth.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. F. Aptikaev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Astafiev

ADDITIONAL INFORMATION

In the opinion of one of the reviewers, the authors have not provided sufficient argumentation to support their hypothesis explaining the anomalously high macroseismic effects of the September 21, 2004 Kaliningrad earthquakes as possibly resulting from other seismic events, triggered by the fore- and mainshock of the Kaliningrad earthquakes, but not recorded by seismic stations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aptikaev, F.F., Erteleva, O.O. Triggered Earthquakes on the Sambia Peninsula. Seism. Instr. 58, 170–181 (2022). https://doi.org/10.3103/S0747923922020025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0747923922020025

Keywords:

Navigation