Skip to main content
Log in

A Bayesian procedure for Probabilistic Tsunami Hazard Assessment

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

In this paper, a Bayesian procedure is implemented for the Probability Tsunami Hazard Assessment (PTHA). The approach is general and modular incorporating all significant information relevant for the hazard assessment, such as theoretical and empirical background, analytical or numerical models, instrumental and historical data. The procedure provides the posterior probability distribution that integrates the prior probability distribution based on the physical knowledge of the process and the likelihood based on the historical data. Also, the method deals with aleatory and epistemic uncertainties incorporating in a formal way all sources of relevant uncertainty, from the tsunami generation process to the wave propagation and impact on the coasts. The modular structure of the procedure is flexible and easy to modify and/or update as long as new models and/or information are available. Finally, the procedure is applied to an hypothetical region, Neverland, to clarify the PTHA evaluation in a realistic case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Annaka T, Satake K, Sakakiyama T, Yanagisawa K, Shuto N (2007) Logic-Tree approach for probabilistic tsunami hazard analysis and its applications to the Japanese coasts. Pure Appl Geophys 164:577–592

    Article  Google Scholar 

  • Borrero JC (2005) Field data and satellite imagery of tsunami effects in Banda Aceh. Science 308:156

    Article  Google Scholar 

  • Burbidge D, Cummins PR, Mleczko R, Thio HK (2008) A probabilistic tsunami hazard assessment for Western Australia. Pure Appl Geophys. doi:10.1007/s00024-008-0421-x

  • Burroughs SM, Tebbens SF (2005) Power-law scaling and probabilistic forecasting of tsunami runup heights. Pure Appl Geophys 162:331–342

    Article  Google Scholar 

  • Choi BH, Pelinovsky E, Hong SJ, Woo SB (2003) Computation of tsunamis in the East (Japan) Sea using dynamically interfaced nested model. Pure Appl Geophys 160:1383–1414

    Article  Google Scholar 

  • Cornell CA (1968) Engineering seismic risk analysis. Bull Seismol Soc Am 58:1583–1606

    Google Scholar 

  • Faenza L, Marzocchi W, Serretti P, Boschi E (2008) On the spatio-temporal distribution of M 7.0+ worldwide seismicity with a non-parametric statistics. Tectonophysics 449:97–104. doi:10.1016/j.tecto.2007.11.066

    Article  Google Scholar 

  • Farreras S, Ortiz M, Gonzalez JI (2007) Steps towards the implementation of a tsunami detection, warning, mitigation and preparedness program for Southwestern coastal areas of Mexico. Pure Appl Geophys 164:605–616

    Article  Google Scholar 

  • Fournier d’Albe EM (1979) Objectives of volcanic monitoring and prediction. J Geol Soc 136:321–326

    Article  Google Scholar 

  • Fujii Y, Satake K (2007) Tsunami source of the 2004 Sumatra-Andaman earthquake inferred from tide gauge and satellite data. Bull Seismol Soc Am 97:192–207

    Article  Google Scholar 

  • Geist EL (2005) Rapid tsunami models and earthquake source parameters: far-field and local applications. ISET J Earthquake Tech 42:127–136

    Google Scholar 

  • Geist EL, Parsons T (2006) Probabilistic analysis of tsunami hazards. Nat Haz 37:277–314

    Article  Google Scholar 

  • Gelman A, Carlin JB, Stern HS, Rubin DB (1995) Bayesian data analysis. Chapman and Hall, New York

    Google Scholar 

  • Gerstenberger MC, Wiemer S, Jones LM, Reasenberg PA (2005) Real-time forecasts of tomorrow’s earthquakes in California. Nature 435:328–331

    Article  Google Scholar 

  • Gruppo di lavoro (2004) Redazione della mappa di pericolosità sismica prevista dall’Ordinanza PCM 3274 del 20 marzo 2003. Rapporto conclusivo per il Dipartimento della Protezione Civile, INGV, Milano-Roma, aprile 2004, 65 pp + 5 appendici

  • Gutenberg B, Richter C (1954) Seismicity of the earth and associated phenomena, 2nd edn. Princeton University Press, New Jersey

    Google Scholar 

  • Horsburgh KJ, Wilson C, Baptie BJ, Cooper A, Cresswell D, Musson RMW, Ottemoller L, Richardson S, Sargeant SL (2008) Impact of a Lisbon-type tsunami on the U.K. coastline and the implications for tsunami propagation over broad continental shelves. J Geophys Res 113:C04007. doi:10.1029/2007JC004425

    Article  Google Scholar 

  • Kagan YY, Jackson DD (2000) Probabilistic forecasting of earthquakes. Geophys J Int 143:438–453

    Article  Google Scholar 

  • Kietpawpan M, Visuthismajarn P, Tanavud C, Robson MG (2008) Method of calculating tsunami travel times in the Andaman Sea region. Nat Haz 46:89–106

    Article  Google Scholar 

  • Kowalik Z, Knight W, Logan T, Whitmore P (2007) The tsunami of 26 December, 2004: numerical modeling and energy considerations. Pure Appl Geophys 164:379–393

    Article  Google Scholar 

  • Liu PL-F, Lynett P, Fernando H, Jaffe BE, Fritz H, Higman B, Morton R, Goff J, Synolakis C (2005) Observation by international tsunami survey team in Sri Lanka. Science 308:1595

    Article  Google Scholar 

  • Liu Y, Santos A, Wang SM, Shi Y, Liu H, Yuen DA (2007) Tsunami hazards along Chinese coast from potential earthquakes in South China Sea. Phys Earth Plan Int 163:233–244

    Article  Google Scholar 

  • Lombardi AM, Marzocchi W (2007) Evidence of clustering and nonstationarity in the time distribution of large worldwide earthquakes. J Geophys Res 112:B02303. doi:10.1029/2006JB004568

    Article  Google Scholar 

  • Marzocchi W, Lombardi AM (2008) A double branching model for earthquake occurrence. J Geophys Res 113:B08317. doi:10.1029/2007JB005472

    Article  Google Scholar 

  • Marzocchi W, Sandri L, Gasparini P, Newhall C, Boschi E (2004) Quantifying probabilities of volcanic events: the example of volcanic hazard at Mount Vesuvius. J Geophys Res 109:B11201. doi:10.1029/2004JB003155

    Article  Google Scholar 

  • Marzocchi W, Neri A, Newhall CG, Papale P (2007) Probabilistic volcanic hazard and risk assessment. EOS, Tran AGU 88(32):318

    Article  Google Scholar 

  • Marzocchi W, Sandri L, Selva J (2008) BET_EF: a probabilistic tool for long- and short-term eruption forecasting. Bull Volcanol 70:623–632. doi:10.1007/s00445-007-0157-y

    Article  Google Scholar 

  • McGuire R (1995) Probabilistic seismic hazard analysis and design earthquakes: closing the loop. Bull Seismol Soc Am 85:1275–1284

    Google Scholar 

  • Okada Y (1992) Internal deformation due to shear and tensile faults in a half-space. Bull Seismol Soc Am 82:1018–1040

    Google Scholar 

  • Orfanogiannaki K, Papadopoulos GA (2007) Conditional probability approach of the assessment of tsunami potential: application in three tsunamigenic regions of the Pacific Ocean. Pure Appl Geophys 164:593–603

    Article  Google Scholar 

  • Papadopoulos GA, Caputo R, McAdoo B, Pavlides S, Karastathis V, Fokaefs A, Orfanogiannaki K, Valkaniotis S (2006) The large tsunami of 26 December 2004: field observations and eyewitnesses accounts from Sri Lanka, Maldives Is and Thailand. Earth Planets Space 58:233–241

    Google Scholar 

  • Power W, Downes G, Stirling M (2007) Estimation of tsunami hazard in New Zealand due to South American earthquakes. Pure Appl Geophys 164:547–564

    Article  Google Scholar 

  • Sato H, Murakami H, Kozuki Y, Yamamoto N (2003) Study of a simplified method of tsunami risk assessment. Nat Haz 29:325–340

    Article  Google Scholar 

  • Savage JC (1994) Empirical earthquakes probabilities from observed recurrence intervals. Bull Seismol Soc Am 84:219–221

    Google Scholar 

  • Senior Seismic Hazard Analysis Committee (SSHAC) (1997), Recommendation for probabilistic seismic hazard analysis: guidance on uncertainty and use of experts, Report NUREG/CR-6372, Washington DC

  • Shuto N, Goto C, Imamura F (1991) Numerical simulation as a means of warning for near field tsunamis. Coast Eng Jpn 33(2):173–193

    Google Scholar 

  • Synolakis CE (1987) The runup of solitary waves. J Fluid Mech 185:523–545

    Article  Google Scholar 

  • Tinti S, Armigliato A (2003) The use of scenarios to evaluate the tsunami impact in southern Italy. Mar Geol 199:221–243

    Article  Google Scholar 

  • Tinti S, Armigliato A, Tonini R, Maramai A, Graziani L (2005) Assessing the hazard related to tsunamis of tectonic origin: a hybrid statistical-deterministic method applied to Southern Italy coasts. ISET J Earthquake Tech 42:189–201

    Google Scholar 

  • Titov V, Gonzalez FI (1997) Implementation and testing of the Method of Splitting Tsunami (MOST) model, Technical Report NOAA Tech. Memo. ERL PMEL-112 (PB98-122773), NOAA/Pacific Marine Environmental Laboratory, Seattle, WA

  • Ward SN (2002) Tsunamis. In: Meyers RA (ed) Encyclopedia of physical science and technology. Academic Press, New York

    Google Scholar 

  • Wells DL, Coppersmith KJ (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area and surface displacement. Bull Seismol Soc Am 84:974–1002

    Google Scholar 

  • Yanagisawa K, Imamura F, Sakakiyama T, Annaka T, Takeda T, Shuto N (2007) Tsunami assessment for risk management at nuclear power facilities in Japan. Pure Appl Geophys 164:565–576

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by the EU Project TRANSFER (Tsunami Risk and Strategies for the European Region). We want to thank Dr. Silvia Pondrelli for the valuable and constructive comments on moment tensors. Finally, we thank G. Papadopoulos and an anonymous reviewer for the helpful comments that improve the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita Grezio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grezio, A., Marzocchi, W., Sandri, L. et al. A Bayesian procedure for Probabilistic Tsunami Hazard Assessment. Nat Hazards 53, 159–174 (2010). https://doi.org/10.1007/s11069-009-9418-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-009-9418-8

Keywords

Navigation