Skip to main content
Log in

Vesicle pools and synapsins: New insights into old enigmas

  • Brain Cell Views
  • Published:
Brain Cell Biology

Abstract

Synapsins are a multigene family of neuron-specific phosphoproteins and comprise the most abundant synaptic vesicle proteins. They have been proposed to tether synaptic vesicles to each other to maintain a reserve pool in the vicinity of the active zone. Such a role is supported by the observation that disruption of synapsin function leads to a depletion of the reserve pool of vesicles and an increase in synaptic depression. However, other functions for synapsins have been proposed as well, and there currently exists no coherent picture of how these abundant proteins modulate synaptic transmission. Here, we discuss novel insights into how synapsins may regulate neurotransmitter release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Augustine, G. J., Charlton, M. P., and Smith, S. J. (1985). Calcium entry and transmitter release at voltage-clamped nerve terminals of squid. J. Physiol. 367, 163–181

    PubMed  CAS  Google Scholar 

  • Bloom, O., Evergren, E., Tomilin, N., Kjaerulff, O., Low, P., Brodin, L., Pieribone, V. A., Greengard, P., and Shupliakov, O. (2003). Colocalization of synapsin and actin during synaptic vesicle recycling. J. Cell Biol. 161, 737–747

    Article  PubMed  CAS  Google Scholar 

  • Browning, M. D., Huang, C. K., and Greengard, P. (1987). Similarities between protein IIIa and protein IIIb, two prominent synaptic vesicle-associated phosphoproteins. J. Neurosci. 7, 847–856

    PubMed  CAS  Google Scholar 

  • Bustos, R., Kolen, E. R., Braiterman, L., Baines, A. J., Gorelick, F. S., and Hubbard, A. L. (2001). Synapsin I is expressed in epithelial cells: Localization to a unique trans-Golgi compartment. J. Cell Sci. 114, 3695–3704

    PubMed  CAS  Google Scholar 

  • Ceccarelli, B., Hurlbut, W. P., and Mauro, A. (1973). Turnover of transmitter and synaptic vesicles at the frog neuromuscular junction. J. Cell Biol. 57, 499–524

    Article  PubMed  CAS  Google Scholar 

  • Chandra, S., Gallardo, G., Fernandez-Chacón, R., Schlüter, O. M., and Südhof, T. C. (2005). Alpha-synuclein cooperates with CSPalpha in preventing neurodegeneration. Cell 123, 383–396

    Article  PubMed  CAS  Google Scholar 

  • Chi, P., Greengard, P., and Ryan, T. A. (2001). Synapsin dispersion and reclustering during synaptic activity. Nat. Neurosci. 4, 1187–1193

    Article  PubMed  CAS  Google Scholar 

  • Chi, P., Greengard, P., and Ryan, T. A. (2003). Synaptic vesicle mobilization is regulated by distinct synapsin I phosphorylation pathways at different frequencies. Neuron 38, 69–78

    Article  PubMed  CAS  Google Scholar 

  • Czernik, A. J., Pang, D. T., and Greengard, P. (1987). Amino acid sequences surrounding the cAMP-dependent and calcium/calmodulin-dependent phosphorylation sites in rat and bovine synapsin I. Proc. Natl. Acad. Sci. USA 84, 7518–7522

    Article  PubMed  CAS  Google Scholar 

  • Daly, C., and Ziff, E. B. (1997). Post-transcriptional regulation of synaptic vesicle protein expression and the developmental control of synaptic vesicle formation. J. Neurosci. 17, 2365–2375

    PubMed  CAS  Google Scholar 

  • De Camilli, P., Harris, S. M. Jr., Huttner, W. B., and Greengard, P. (1983). Synapsin I (protein I), a nerve terminal-specific phosphoprotein. II. Its specific association with synaptic vesicles demonstrated by immunocytochemistry in agarose-embedded synaptosomes. J. Cell Biol. 96, 1355–1373

    Article  PubMed  Google Scholar 

  • Duncan, R. R., Greaves, J, Wiegand, U. K., Matskevich, I., Bodammer, G., Apps, D. K., Shipston, M. J., and Chow, R. H. (2003). Functional and spatial segregation of secretory vesicle pools according to vesicle age. Nature 422, 176–180

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Chacón, R., Wolfel, M., Nishimune, H., Tabares, L., Schmitz, F., Castellano-Munoz, M., Rosenmund, C., Montesinos, M. L., Sanes, J. R., Schneggenburger, R., and Südhof, T. C. (2004). The synaptic vesicle protein CSP alpha prevents presynaptic degeneration. Neuron 42, 237–251

    Article  PubMed  Google Scholar 

  • Firestone, J., and Browning, M. (1992). Synapsin II phosphorylation and catecholamine release in bovine adrenal chromaffin cells: Additive effects of histamine and nicotine. J. Neurochem. 58, 441–447

    Article  PubMed  CAS  Google Scholar 

  • Gitler, D., Takagishi, Y., Feng, J., Ren, Y., Rodriguiz, R. M., Wetsel, W. C., Greengard, P., and Augustine, G. J. (2004). Different presynaptic roles of synapsins at excitatory and inhibitory synapses. J. Neurosci. 24, 11368–11380

    Article  PubMed  CAS  Google Scholar 

  • Greengard, P., Valtorta, F., Czernik, A. J., and Benfenati, F. (1993). Synaptic vesicle phosphoproteins and regulation of synaptic function. Science 259, 780–785

    Article  PubMed  CAS  Google Scholar 

  • Han, H. Q., Nichols, R. A., Rubin, M. R., Bähler, M., and Greengard, P. (1991). Induction of formation of presynaptic terminals in neuroblastoma cells by synapsin IIb. Nature 349, 697–700

    Article  PubMed  CAS  Google Scholar 

  • Harata, N., Pyle, J. L., Aravanis, A. M., Mozhayeva, M., Kavalali, E. T., and Tsien, R. W. (2001). Limited numbers of recycling vesicles in small CNS nerve terminals: implications for neural signaling and vesicular cycling. Trends. Neurosci. 24, 637–643

    Article  PubMed  CAS  Google Scholar 

  • Haycock, J. W., Greengard, P., and Browning, M. D. (1988). Cholinergic regulation of protein III phosphorylation in bovine adrenal chromaffin cells. J. Neurosci. 8, 3233–3239

    PubMed  CAS  Google Scholar 

  • Heuser, J. E., and Reese, T. S. (1973). Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular function. J. Cell Biol. 57, 315–344

    Article  PubMed  CAS  Google Scholar 

  • Hilfiker, S., Schweizer, F. E., Kao, H. T., Czernik, A. J., Greengard, P., and Augustine, G. J. (1998). Two sites of action for synapsin domain E in regulating neurotransmitter release. Nat. Neurosci. 1, 29–35

    Article  PubMed  CAS  Google Scholar 

  • Hilfiker, S., Pieribone, V. A., Czernik, A. J., Kao, H. T., Augustine, G. J., and Greengard, P. (1999). Synapsins as regulators of neurotransmitter release. Philos. Trans. R. Soc. Lond. B 354, 269–279

    Article  CAS  Google Scholar 

  • Hirokawa, N., Sobue, K., Kanda, K., Harada, A., and Yorifuji, H. (1989). The cytoskeletal architecture of the presynaptic terminal and molecular structure of synapsin I. J. Cell Biol. 108, 111–126

    Article  PubMed  CAS  Google Scholar 

  • Hosaka, M., and Südhof, T. C. (1998). Synapsin III, a novel synapsin with an unusual regulation by Ca2+. J. Biol. Chem. 273, 13371–13374

    Article  PubMed  CAS  Google Scholar 

  • Hosaka, M., and Südhof, T. C. (1999a). Homo- and heterodimerization of synapsins. J. Biol. Chem. 274, 16747–16753

    Article  PubMed  CAS  Google Scholar 

  • Hosaka, M, Hammer, R. E., and Südhof, T. C. (1999b). A phospho-switch controls the dynamic association of synapsins with synaptic vesicles. Neuron 24, 377–387

    Article  PubMed  CAS  Google Scholar 

  • Humeau, Y., Doussau, F., Vitiello, F., Greengard, P., Benfenati, F., and Poulain, B. (2001). Synapsin controls both reserve and releasable synaptic vesicle pools during neuronal activity and short-term plasticity in Aplysia. J. Neurosci. 21, 4195–4206

    PubMed  CAS  Google Scholar 

  • Jovanovic, J. N., Benfenati, F., Siow, Y. L., Sihra, T. S., Sanghera, J. S., Pelech, S. L., Greengard, P., and Czernik, A. J. (1996). Neurotrophins stimulate phosphorylation of synapsin I by MAP kinase and regulate synapsin I-actin interactions. Proc. Natl. Acad. Sci. USA 93, 3679–3683

    Article  PubMed  CAS  Google Scholar 

  • Jovanovic, J. N., Sihra, T. S., Nairn, A. C., Hemmings, H. C. Jr., Greengard, P., and Czernik, A. J. (2001). Opposing changes in phosphorylation of specific sites in synapsin I during Ca2+-dependent glutamate release in isolated nerve terminals. J. Neurosci. 21, 7944–7953

    PubMed  CAS  Google Scholar 

  • Katz, B. (1969). The Release of Neural Transmitter Substances. Liverpool, Liverpool Univ. Press

    Google Scholar 

  • Kao, H. T., Porton, B., Czernik, A. J., Feng, J., Yiu, G., Häring, M., Benfenati, F., and Greengard, P. (1998). A third member of the synapsin gene family. Proc. Natl. Acad. Sci. USA 95, 4667–4672

    Article  PubMed  CAS  Google Scholar 

  • Kao, H. T., Porton, B., Hilfiker, S., Stefani, G., DeSalle, R., Pieribone, V. A., and Greengard, P. (1999). Molecular evolution of the synapsin gene family. J. Exp. Zool. 285, 360–377

    Article  PubMed  CAS  Google Scholar 

  • Liu, X. B., and Jones, E. G. (1996). Localization of alpha type II calcium calmodulin-dependent protein kinase at glutamatergic but not gamma-aminobutyric acid (GABAergic) synapses in thalamus and cerebral cortex. Proc. Natl. Acad. Sci. USA 93, 7332–7336

    Article  PubMed  CAS  Google Scholar 

  • Matsubara, M., Kusubata, M., Ishiguro, K., Uchida, T., Titani, K., and Taniguchi, H. (1996). Site-specific phosphorylation of synapsin I by mitogen-activated protein kinase and Cdk5 and its effects on physiological functions. J. Biol. Chem. 271, 21108–21113

    Article  PubMed  CAS  Google Scholar 

  • Menegon, A, Bonanomi, D., Albertinazzi, C., Lotti, F., Ferrari, G., Kao, H. T., Benfenati, F., Baldelli, P., and Valtorta, F. (2006). Protein kinase A-mediated synapsin I phosphorylation is a central modulator of Ca2+-dependent synaptic activity. J. Neurosci. 26, 11670–11681

    Article  PubMed  CAS  Google Scholar 

  • Moulder, K. L., and Mennerick, S. (2005). Reluctant vesicles contribute to the total readily releasable pool in glutamatergic hippocampal neurons. J. Neurosci. 25, 3842–3850

    Article  PubMed  CAS  Google Scholar 

  • Moulder, K. L., and Mennerick, S. (2006). Synaptic vesicles: turning reluctance into action. Neuroscientist 12, 11–15

    Article  PubMed  CAS  Google Scholar 

  • Nakata, T., and Hirokawa, N. (1992). Organization of cortical cytoskeleton of cultured chromaffin cells and involvement in secretion as revealed by quick-freeze, deep-etching, and double-label immunoelectron microscopy. J. Neurosci. 12, 2186–2197

    PubMed  CAS  Google Scholar 

  • Navone, F., Greengard, P., and De Camilli, P. (1984). Synapsin I in nerve terminals: selective association with small synaptic vesicles. Science 226, 1209–1211

    Article  PubMed  CAS  Google Scholar 

  • Pieribone, V. A., Shupliakov, O., Brodin, S., Hilfiker-Rothenfluh, S., Czernik, A. J., and Greenggard, P. (1995). Distinct pools of synaptic vesicles in neurotransmitter release. Nature 375, 493–497

    Article  PubMed  CAS  Google Scholar 

  • Rizzoli, S. O., and Betz, W. J. (2004). The structural organization of the readily releasable pool of synaptic vesicles. Science 303, 2037–2039

    Article  PubMed  CAS  Google Scholar 

  • Rosahl, T. W., Spillane, E., Missler, M., Herz, J., Selig, D. K., Wolff, J. R., Hammer, R. E., Malenka, R. C., and Südhof, T. C. (1995). Essential functions of synapsins I and II in synaptic vesicle regulation. Nature 375, 488–493

    Article  PubMed  CAS  Google Scholar 

  • Sankaranarayanan, S., Atluri, P. P., and Ryan, T. A. (2003). Actin has a molecular scaffolding, not propulsive, role in presynaptic function. Nat. Neurosci. 6, 127–135

    Article  PubMed  CAS  Google Scholar 

  • Schiebler, W., Jahn, R., Doucet, J. P., Rothlein, J., and Greengard, P. (1986). Characterization of synapsin I binding to small synaptic vesicles. J. Biol. Chem. 261, 8383–8390

    PubMed  CAS  Google Scholar 

  • Schikorski, T., and Stevens, C. F. (2001). Morphological correlates of functionally defined synaptic vesicle populations. Nat. Neurosci. 4, 391–395

    Article  PubMed  CAS  Google Scholar 

  • Schweizer, F. E., and Ryan, T. A. (2006). The synaptic vesicle: cycle of exocytosis and endocytosis. Curr. Opin. Neurobiol. 16, 298–304

    Article  PubMed  CAS  Google Scholar 

  • Südhof, T. C., Czernik, A. J., Kao, H. T., Takei, K., Johnston, P. A., Horiuchi, A., Kanazir, S. D., Wagner, M. A., Perin, M. S., de Camilli, P., and Greengard, P. (1989). Synapsins: mosaic of shared and individual domains in a family of synaptic vesicle phosphoproteins. Science 245, 1474–1480

    Article  PubMed  Google Scholar 

  • Südhof, T. C. (2004). The synaptic vesicle cycle. Annu. Rev. Neurosci. 27, 509–547

    Article  PubMed  Google Scholar 

  • Sugiyama, T., Shinoe, T., Ito, Y., Misawa, H., Tojima, T., Ito, E., and Yoshioka, T. (2000). A novel function of synapsin II in neurotransmitter release. Mol. Brain Res. 85, 133–143

    Article  PubMed  CAS  Google Scholar 

  • Sun, J., Bronk, P., Liu, X., Han, W., and Südhof, T. C. (2006). Synapsins regulate use-dependent synaptic plasticity in the calyx of Held by a Ca2+/calmodulin-dependent pathway. Proc. Natl. Acad. Sci. USA 103, 2880–2885

    Article  PubMed  CAS  Google Scholar 

  • Tao-Cheng, J. H., Dosemeci, A., Winters, C. A., Reese, T. S. (2007). Changes in the distribution of calcium calmodulin-dependent protein kinase II at the presynaptic bouton after depolarization. Brain Cell Biology.

  • Terada, S., Tsujimoto, T., Takei, Y., Takahashi, T., and Hirokawa, N. (1999). Impairment of inhibitory synaptic transmission in mice lacking synapsin I. J. Cell Biol. 145, 1039–1048

    Article  PubMed  CAS  Google Scholar 

  • Torri-Tarelli, F., Villa, A., Valtorta, F., De Camilli, P., and Greengard, P. (1990). Redistribution of synaptophysin and synapsin I during alpha-latrotoxin-induced release of neurotransmitter at the neuromuscular junction. J. Cell Biol. 110, 449–459

    Article  PubMed  CAS  Google Scholar 

  • Valtorta, F., Iezzi, N., Benfenati, F., Lu, B., Poo, M. M., and Greengard, P. (1995). Accelerated structural maturation induced by synapsin I at developing neuromuscular synapses of Xenopus laevis. Eur. J. Neurosci. 7, 261–270

    Article  PubMed  CAS  Google Scholar 

  • Venton, B. J., Seipel, A. T., Phillips, P. E. M., Wetsel, W. C., Gitler, D., Greengard, P, Augustine, G. J., and Wightman, R. M. (2006). Cocaine increases dopamine release by mobilization of a synapsin-dependent reserve pool. J. Neurosci. 26, 3206–3209

    Article  PubMed  CAS  Google Scholar 

  • Villanueva, M., Augustine, G. J., and Wightman, R. M. (2007). Synapsin II negatively regulates catecholamine release. Brain Cell Biology 35(2/3), 125–136

    Article  Google Scholar 

Download references

Acknowledgments

Work in the laboratory is supported by a grant from the Spanish Ministry of Education and Science (MEC). SH is a Ramón y Cajal Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabine Hilfiker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fdez, E., Hilfiker, S. Vesicle pools and synapsins: New insights into old enigmas. Brain Cell Bio 35, 107–115 (2006). https://doi.org/10.1007/s11068-007-9013-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11068-007-9013-4

Keywords

Navigation