Skip to main content

Synapsins and Synaptic Vesicle Storage

  • Chapter
  • First Online:
Presynaptic Terminals

Abstract

The synapsins constitute a family of evolutionarily conserved neuronal phosphoproteins associated with the cytosolic surface of synaptic vesicles. In mammals, the family comprises three members encoded by distinct genes that give rise to various splicing isoforms. In the central nervous system, the vast majority of neurons expresses at least one synapsin isoform. However, the functions of these proteins are not fully understood to date. Given their ability to bind both the vesicular membrane and actin filaments in a phosphorylation-dependent manner, the classical role attributed to synapsins is the reversible anchorage of synaptic vesicles to the cytoskeletal matrix present in the presynaptic terminal. However, recent evidences suggest the implication of synapsins in other aspects of the synaptic vesicle life cycle, such as docking, fusion and recycling. Genetic manipulation of synapsins in various in vitro and in vivo models has proved that they are dispensable for the proper development of functional neuronal networks but are essential modulators of synaptic neurotransmission and play differential roles at excitatory and inhibitory synapses. Indeed, mice lacking synapsins are viable and do not display gross brain abnormalities but exhibit generalised epileptic seizures as well as autism-related behavioural abnormalities. Consistently, several mutations have been identified in SYN1 and SYN2 genes in patients affected by epilepsy and/or autism spectrum disorders.

This chapter overviews the current knowledge about synapsin structure and function in the modulation of synaptic vesicle release, as well as the mechanisms leading to synaptic pathology when their properties are altered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bahler M, Greengard P (1987) Synapsin I bundles F-actin in a phosphorylation-dependent manner. Nature 326:704–707

    CAS  PubMed  Google Scholar 

  • Bahler M, Benfenati F, Valtorta F, Czernik AJ, Greengard P (1989) Characterization of synapsin I fragments produced by cysteine-specific cleavage: a study of their interactions with F-actin. J Cell Biol 108:1841–1849

    CAS  PubMed  Google Scholar 

  • Baldelli P, Fassio A, Valtorta F, Benfenati F (2007) Lack of synapsin I reduces the readily releasable pool of synaptic vesicles at central inhibitory synapses. J Neurosci 27:13520–13531

    CAS  PubMed  Google Scholar 

  • Benfenati F, Bahler M, Jahn R, Greengard P (1989a) Interactions of synapsin I with small synaptic vesicles: distinct sites in synapsin I bind to vesicle phospholipids and vesicle proteins. J Cell Biol 108:1863–1872

    CAS  PubMed  Google Scholar 

  • Benfenati F, Greengard P, Brunner J, Bahler M (1989b) Electrostatic and hydrophobic interactions of synapsin I and synapsin I fragments with phospholipid bilayers. J Cell Biol 108:1851–1862

    CAS  PubMed  Google Scholar 

  • Benfenati F, Valtorta F, Bahler M, Greengard P (1989c) Synapsin I, a neuron-specific phosphoprotein interacting with small synaptic vesicles and F-actin. Cell Biol Int Rep 13:1007–1021

    CAS  PubMed  Google Scholar 

  • Benfenati F, Neyroz P, Bahler M, Masotti L, Greengard P (1990) Time-resolved fluorescence study of the neuron-specific phosphoprotein synapsin I. Evidence for phosphorylation-dependent conformational changes. J Biol Chem 265:12584–12595

    CAS  PubMed  Google Scholar 

  • Benfenati F, Valtorta F, Greengard P (1991) Computer modeling of synapsin I binding to synaptic vesicles and F-actin: implications for regulation of neurotransmitter release. Proc Natl Acad Sci U S A 88:575–579

    CAS  PubMed Central  PubMed  Google Scholar 

  • Benfenati F, Valtorta F, Rubenstein JL, Gorelick FS, Greengard P, Czernik AJ (1992) Synaptic vesicle-associated Ca2+/calmodulin-dependent protein kinase II is a binding protein for synapsin I. Nature 359:417–420

    CAS  PubMed  Google Scholar 

  • Benfenati F, Valtorta F, Rossi MC, Onofri F, Sihra T, Greengard P (1993) Interactions of synapsin I with phospholipids: possible role in synaptic vesicle clustering and in the maintenance of bilayer structures. J Cell Biol 123:1845–1855

    CAS  PubMed  Google Scholar 

  • Bloom O, Evergren E, Tomilin N, Kjaerulff O, Low P, Brodin L, Pieribone VA, Greengard P, Shupliakov O (2003) Colocalization of synapsin and actin during synaptic vesicle recycling. J Cell Biol 161:737–747

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bogen IL, Jensen V, Hvalby O, Walaas SI (2009) Synapsin-dependent development of glutamatergic synaptic vesicles and presynaptic plasticity in postnatal mouse brain. Neuroscience 158:231–241

    CAS  PubMed  Google Scholar 

  • Boido D, Farisello P, Cesca F, Ferrea E, Valtorta F, Benfenati F, Baldelli P (2010) Cortico-hippocampal hyperexcitability in synapsin I/II/III knockout mice: age-dependency and response to the antiepileptic drug levetiracetam. Neuroscience 171:268–283

    CAS  PubMed  Google Scholar 

  • Bonanomi D, Menegon A, Miccio A, Ferrari G, Corradi A, Kao HT, Benfenati F, Valtorta F (2005) Phosphorylation of synapsin I by cAMP-dependent protein kinase controls synaptic vesicle dynamics in developing neurons. J Neurosci 25:7299–7308

    CAS  PubMed  Google Scholar 

  • Bragina L, Candiracci C, Barbaresi P, Giovedi S, Benfenati F, Conti F (2007) Heterogeneity of glutamatergic and GABAergic release machinery in cerebral cortex. Neuroscience 146:1829–1840

    CAS  PubMed  Google Scholar 

  • Brautigam CA, Chelliah Y, Deisenhofer J (2004) Tetramerization and ATP binding by a protein comprising the A, B, and C domains of rat synapsin I. J Biol Chem 279:11948–11956

    CAS  PubMed  Google Scholar 

  • Cambiaghi M, Cursi M, Monzani E, Benfenati F, Comi G, Minicucci F, Valtorta F, Leocani L (2013) Temporal evolution of neurophysiological and behavioral features of synapsin I/II/III triple knock-out mice. Epilepsy Res 103:153–160

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cavalleri GL, Weale ME, Shianna KV, Singh R, Lynch JM, Grinton B, Szoeke C, Murphy K, Kinirons P, O’Rourke D, Ge D, Depondt C, Claeys KG, Pandolfo M, Gumbs C, Walley N, McNamara J, Mulley JC, Linney KN, Sheffield LJ, Radtke RA, Tate SK, Chissoe SL, Gibson RA, Hosford D, Stanton A, Graves TD, Hanna MG, Eriksson K, Kantanen AM, Kalviainen R, O’Brien TJ, Sander JW, Duncan JS, Scheffer IE, Berkovic SF, Wood NW, Doherty CP, Delanty N, Sisodiya SM, Goldstein DB (2007) Multicentre search for genetic susceptibility loci in sporadic epilepsy syndrome and seizure types: a case-control study. Lancet Neurol 6:970–980

    CAS  PubMed  Google Scholar 

  • Ceccaldi PE, Grohovaz F, Benfenati F, Chieregatti E, Greengard P, Valtorta F (1995) Dephosphorylated synapsin I anchors synaptic vesicles to actin cytoskeleton: an analysis by videomicroscopy. J Cell Biol 128:905–912

    CAS  PubMed  Google Scholar 

  • Cesca F, Baldelli P, Valtorta F, Benfenati F (2010) The synapsins: key actors of synapse function and plasticity. Prog Neurobiol 91:313–348

    CAS  PubMed  Google Scholar 

  • Cheetham JJ, Hilfiker S, Benfenati F, Weber T, Greengard P, Czernik AJ (2001) Identification of synapsin I peptides that insert into lipid membranes. Biochem J 354:57–66

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cheetham JJ, Murray J, Ruhkalova M, Cuccia L, McAloney R, Ingold KU, Johnston LJ (2003) Interaction of synapsin I with membranes. Biochem Biophys Res Commun 309:823–829

    CAS  PubMed  Google Scholar 

  • Chen Q, He G, Qin W, Chen QY, Zhao XZ, Duan SW, Liu XM, Feng GY, Xu YF, St Clair D, Li M, Wang JH, Xing YL, Shi JG, He L (2004a) Family-based association study of synapsin II and schizophrenia. Am J Hum Genet 75:873–877

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen Q, He G, Wang XY, Chen QY, Liu XM, Gu ZZ, Liu J, Li KQ, Wang SJ, Zhu SM, Feng GY, He L (2004b) Positive association between synapsin II and schizophrenia. Biol Psychiatry 56:177–181

    CAS  PubMed  Google Scholar 

  • Chi P, Greengard P, Ryan TA (2001) Synapsin dispersion and reclustering during synaptic activity. Nat Neurosci 4:1187–1193

    CAS  PubMed  Google Scholar 

  • Chi P, Greengard P, Ryan TA (2003) Synaptic vesicle mobilization is regulated by distinct synapsin I phosphorylation pathways at different frequencies. Neuron 38:69–78

    CAS  PubMed  Google Scholar 

  • Chiappalone M, Casagrande S, Tedesco M, Valtorta F, Baldelli P, Martinoia S, Benfenati F (2009) Opposite changes in glutamatergic and GABAergic transmission underlie the diffuse hyperexcitability of synapsin I-deficient cortical networks. Cereb Cortex 19:1422–1439

    PubMed  Google Scholar 

  • Chin LS, Li L, Greengard P (1994) Neuron-specific expression of the synapsin II gene is directed by a specific core promoter and upstream regulatory elements. J Biol Chem 269:18507–18513

    CAS  PubMed  Google Scholar 

  • Cole RN, Hart GW (1999) Glycosylation sites flank phosphorylation sites on synapsin I: O-linked N-acetylglucosamine residues are localized within domains mediating synapsin I interactions. J Neurochem 73:418–428

    CAS  PubMed  Google Scholar 

  • Corradi A, Zanardi A, Giacomini C, Onofri F, Valtorta F, Zoli M, Benfenati F (2008) Synapsin-I- and synapsin-II-null mice display an increased age-dependent cognitive impairment. J Cell Sci 121:3042–3051

    CAS  PubMed  Google Scholar 

  • Corradi A, Fadda M, Piton A, Patry L, Marte A, Rossi P, Cadieux-Dion M, Gauthier J, Lapointe L, Mottron L, Valtorta F, Rouleau GA, Fassio A, Benfenati F, Cossette P (2014) SYN2 is an autism predisposing gene: loss-of-function mutations alter synaptic vesicle cycling and axon outgrowth. Hum Mol Genet 23:90–103

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cousin MA, Robinson PJ (2001) The dephosphins: dephosphorylation by calcineurin triggers synaptic vesicle endocytosis. Trends Neurosci 24:659–665

    CAS  PubMed  Google Scholar 

  • Czernik AJ, Pang DT, Greengard P (1987) Amino acid sequences surrounding the cAMP-dependent and calcium/calmodulin-dependent phosphorylation sites in rat and bovine synapsin I. Proc Natl Acad Sci U S A 84:7518–7522

    CAS  PubMed Central  PubMed  Google Scholar 

  • Daly C, Ziff EB (1997) Post-transcriptional regulation of synaptic vesicle protein expression and the developmental control of synaptic vesicle formation. J Neurosci 17:2365–2375

    CAS  PubMed  Google Scholar 

  • De Camilli P, Cameron R, Greengard P (1983a) Synapsin I (protein I), a nerve terminal-specific phosphoprotein. I. Its general distribution in synapses of the central and peripheral nervous system demonstrated by immunofluorescence in frozen and plastic sections. J Cell Biol 96:1337–1354

    PubMed  Google Scholar 

  • De Camilli P, Harris SM Jr, Huttner WB, Greengard P (1983b) Synapsin I (Protein I), a nerve terminal-specific phosphoprotein. II. Its specific association with synaptic vesicles demonstrated by immunocytochemistry in agarose-embedded synaptosomes. J Cell Biol 96:1355–1373

    PubMed  Google Scholar 

  • De Camilli P, Benfenati F, Valtorta F, Greengard P (1990) The synapsins. Annu Rev Cell Biol 6:433–460

    PubMed  Google Scholar 

  • Ekici M, Schmitz F, Hohl M, Seigel GM, Thiel G (2008) Chromatin structure and expression of synapsin I and synaptophysin in retinal precursor cells. Neurochem Int 53:165–172

    CAS  PubMed  Google Scholar 

  • Esser L, Wang CR, Hosaka M, Smagula CS, Südhof TC, Deisenhofer J (1998) Synapsin I is structurally similar to ATP-utilizing enzymes. EMBO J 17:977–984

    CAS  PubMed Central  PubMed  Google Scholar 

  • Etholm L, Linden H, Eken T, Heggelund P (2011) Electroencephalographic characterization of seizure activity in the synapsin I/II double knockout mouse. Brain Res 1383:270–288

    CAS  PubMed  Google Scholar 

  • Evergren E, Zotova E, Brodin L, Shupliakov O (2006) Differential efficiency of the endocytic machinery in tonic and phasic synapses. Neuroscience 141:123–131

    CAS  PubMed  Google Scholar 

  • Farisello P, Boido D, Nieus T, Medrihan L, Cesca F, Valtorta F, Baldelli P, Benfenati F (2013) Synaptic and extrasynaptic origin of the excitation/inhibition imbalance in the hippocampus of synapsin I/II/III knockout mice. Cereb Cortex 23:581–593

    PubMed  Google Scholar 

  • Fassio A, Merlo D, Mapelli J, Menegon A, Corradi A, Mete M, Zappettini S, Bonanno G, Valtorta F, D’Angelo E, Benfenati F (2006) The synapsin domain E accelerates the exoendocytotic cycle of synaptic vesicles in cerebellar Purkinje cells. J Cell Sci 119:4257–4268

    CAS  PubMed  Google Scholar 

  • Fassio A, Patry L, Congia S, Onofri F, Piton A, Gauthier J, Pozzi D, Messa M, Defranchi E, Fadda M, Corradi A, Baldelli P, Lapointe L, St-Onge J, Meloche C, Mottron L, Valtorta F, Khoa Nguyen D, Rouleau GA, Benfenati F, Cossette P (2011) SYN1 loss-of-function mutations in autism and partial epilepsy cause impaired synaptic function. Hum Mol Genet 20:2297–2307

    CAS  PubMed  Google Scholar 

  • Feliciano P, Andrade R, Bykhovskaia M (2013) Synapsin II and Rab3a cooperate in the regulation of epileptic and synaptic activity in the CA1 region of the hippocampus. J Neurosci 33:18319–18330

    CAS  PubMed Central  PubMed  Google Scholar 

  • Feng J, Chi P, Blanpied TA, Xu Y, Magarinos AM, Ferreira A, Takahashi RH, Kao HT, McEwen BS, Ryan TA, Augustine GJ, Greengard P (2002) Regulation of neurotransmitter release by synapsin III. J Neurosci 22:4372–4380

    CAS  PubMed  Google Scholar 

  • Ferreira A, Kao HT, Feng J, Rapoport M, Greengard P (2000) Synapsin III: developmental expression, subcellular localization, and role in axon formation. J Neurosci 20:3736–3744

    CAS  PubMed  Google Scholar 

  • Fesce R, Benfenati F, Greengard P, Valtorta F (1992) Effects of the neuronal phosphoprotein synapsin I on actin polymerization. II. Analytical interpretation of kinetic curves. J Biol Chem 267:11289–11299

    CAS  PubMed  Google Scholar 

  • Forn J, Greengard P (1978) Depolarizing agents and cyclic nucleotides regulate the phosphorylation of specific neuronal proteins in rat cerebral cortex slices. Proc Natl Acad Sci U S A 75:5195–5199

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fornasiero EF, Bonanomi D, Benfenati F, Valtorta F (2010) The role of synapsins in neuronal development. Cell Mol Life Sci 67:1383–1396

    CAS  PubMed  Google Scholar 

  • Fornasiero EF, Raimondi A, Guarnieri FC, Orlando M, Fesce R, Benfenati F, Valtorta F (2012) Synapsins contribute to the dynamic spatial organization of synaptic vesicles in an activity-dependent manner. J Neurosci 32:12214–12227

    CAS  PubMed  Google Scholar 

  • Garcia CC, Blair HJ, Seager M, Coulthard A, Tennant S, Buddles M, Curtis A, Goodship JA (2004) Identification of a mutation in synapsin I, a synaptic vesicle protein, in a family with epilepsy. J Med Genet 41:183–186

    CAS  PubMed Central  PubMed  Google Scholar 

  • Geppert M, Südhof TC (1998) RAB3 and synaptotagmin: the yin and yang of synaptic membrane fusion. Annu Rev Neurosci 21:75–95

    CAS  PubMed  Google Scholar 

  • Giannandrea M, Guarnieri FC, Gehring NH, Monzani E, Benfenati F, Kulozik AE, Valtorta F (2013) Nonsense-mediated mRNA decay and loss-of-function of the protein underlie the X-linked epilepsy associated with the W356x mutation in synapsin I. PLoS One 8:e67724

    CAS  PubMed Central  PubMed  Google Scholar 

  • Giovedi S, Darchen F, Valtorta F, Greengard P, Benfenati F (2004a) Synapsin is a novel Rab3 effector protein on small synaptic vesicles. II. Functional effects of the Rab3A-synapsin I interaction. J Biol Chem 279:43769–43779

    CAS  PubMed  Google Scholar 

  • Giovedi S, Vaccaro P, Valtorta F, Darchen F, Greengard P, Cesareni G, Benfenati F (2004b) Synapsin is a novel Rab3 effector protein on small synaptic vesicles. I. Identification and characterization of the synapsin I-Rab3 interactions in vitro and in intact nerve terminals. J Biol Chem 279:43760–43768

    CAS  PubMed  Google Scholar 

  • Gitler D, Takagishi Y, Feng J, Ren Y, Rodriguiz RM, Wetsel WC, Greengard P, Augustine GJ (2004a) Different presynaptic roles of synapsins at excitatory and inhibitory synapses. J Neurosci 24:11368–11380

    CAS  PubMed  Google Scholar 

  • Gitler D, Xu Y, Kao HT, Lin D, Lim S, Feng J, Greengard P, Augustine GJ (2004b) Molecular determinants of synapsin targeting to presynaptic terminals. J Neurosci 24:3711–3720

    CAS  PubMed  Google Scholar 

  • Gitler D, Cheng Q, Greengard P, Augustine GJ (2008) Synapsin IIa controls the reserve pool of glutamatergic synaptic vesicles. J Neurosci 28:10835–10843

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gomez-Pinilla F, So V, Kesslak JP (2001) Spatial learning induces neurotrophin receptor and synapsin I in the hippocampus. Brain Res 904:13–19

    CAS  PubMed  Google Scholar 

  • Greco B, Manago F, Tucci V, Kao HT, Valtorta F, Benfenati F (2013) Autism-related behavioral abnormalities in synapsin knockout mice. Behav Brain Res 251:65–74

    CAS  PubMed Central  PubMed  Google Scholar 

  • Greengard P, Browning MD, McGuinness TL, Llinas R (1987) Synapsin I, a phosphoprotein associated with synaptic vesicles: possible role in regulation of neurotransmitter release. Adv Exp Med Biol 221:135–153

    CAS  PubMed  Google Scholar 

  • Greengard P, Valtorta F, Czernik AJ, Benfenati F (1993) Synaptic vesicle phosphoproteins and regulation of synaptic function. Science 259:780–785

    CAS  PubMed  Google Scholar 

  • Gronborg M, Pavlos NJ, Brunk I, Chua JJ, Munster-Wandowski A, Riedel D, Ahnert-Hilger G, Urlaub H, Jahn R (2010) Quantitative comparison of glutamatergic and GABAergic synaptic vesicles unveils selectivity for few proteins including MAL2, a novel synaptic vesicle protein. J Neurosci 30:2–12

    CAS  PubMed  Google Scholar 

  • Hart AK, Fioravante D, Liu RY, Phares GA, Cleary LJ, Byrne JH (2011) Serotonin-mediated synapsin expression is necessary for long-term facilitation of the Aplysia sensorimotor synapse. J Neurosci 31:18401–18411

    CAS  PubMed Central  PubMed  Google Scholar 

  • Haycock JW, Greengard P, Browning MD (1988) Cholinergic regulation of protein III phosphorylation in bovine adrenal chromaffin cells. J Neurosci 8:3233–3239

    CAS  PubMed  Google Scholar 

  • Hilfiker S, Schweizer FE, Kao HT, Czernik AJ, Greengard P, Augustine GJ (1998) Two sites of action for synapsin domain E in regulating neurotransmitter release. Nat Neurosci 1:29–35

    CAS  PubMed  Google Scholar 

  • Hilfiker S, Benfenati F, Doussau F, Nairn AC, Czernik AJ, Augustine GJ, Greengard P (2005) Structural domains involved in the regulation of transmitter release by synapsins. J Neurosci 25:2658–2669

    CAS  PubMed  Google Scholar 

  • Hoesche C, Bartsch P, Kilimann MW (1995) The CRE consensus sequence in the synapsin I gene promoter region confers constitutive activation but no regulation by cAMP in neuroblastoma cells. Biochim Biophys Acta 1261:249–256

    PubMed  Google Scholar 

  • Hosaka M, Südhof TC (1999) Homo- and heterodimerization of synapsins. J Biol Chem 274:16747–16753

    CAS  PubMed  Google Scholar 

  • Huttner WB, DeGennaro LJ, Greengard P (1981) Differential phosphorylation of multiple sites in purified protein I by cyclic AMP-dependent and calcium-dependent protein kinases. J Biol Chem 256:1482–1488

    CAS  PubMed  Google Scholar 

  • Huttner WB, Schiebler W, Greengard P, De Camilli P (1983) Synapsin I (protein I), a nerve terminal-specific phosphoprotein. III. Its association with synaptic vesicles studied in a highly purified synaptic vesicle preparation. J Cell Biol 96:1374–1388

    CAS  PubMed  Google Scholar 

  • James AB, Conway AM, Thiel G, Morris BJ (2004) Egr-1 modulation of synapsin I expression: permissive effect of forskolin via cAMP. Cell Signal 16:1355–1362

    CAS  PubMed  Google Scholar 

  • Jensen V, Walaas SI, Hilfiker S, Ruiz A, Hvalby O (2007) A delayed response enhancement during hippocampal presynaptic plasticity in mice. J Physiol 583:129–143

    CAS  PubMed Central  PubMed  Google Scholar 

  • John JP, Chen WQ, Pollak A, Lubec G (2007) Mass spectrometric studies on mouse hippocampal synapsins Ia, IIa, and IIb and identification of a novel phosphorylation site at serine-546. J Proteome Res 6:2695–2710

    CAS  PubMed  Google Scholar 

  • Johnson EM, Ueda T, Maeno H, Greengard P (1972) Adenosine 3’,5-monophosphate-dependent phosphorylation of a specific protein in synaptic membrane fractions from rat cerebrum. J Biol Chem 247:5650–5652

    CAS  PubMed  Google Scholar 

  • Jovanovic JN, Benfenati F, Siow YL, Sihra TS, Sanghera JS, Pelech SL, Greengard P, Czernik AJ (1996) Neurotrophins stimulate phosphorylation of synapsin I by MAP kinase and regulate synapsin I-actin interactions. Proc Natl Acad Sci U S A 93:3679–3683

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jovanovic JN, Czernik AJ, Fienberg AA, Greengard P, Sihra TS (2000) Synapsins as mediators of BDNF-enhanced neurotransmitter release. Nat Neurosci 3:323–329

    CAS  PubMed  Google Scholar 

  • Jovanovic JN, Sihra TS, Nairn AC, Hemmings HC Jr, Greengard P, Czernik AJ (2001) Opposing changes in phosphorylation of specific sites in synapsin I during Ca2+−dependent glutamate release in isolated nerve terminals. J Neurosci 21:7944–7953

    CAS  PubMed  Google Scholar 

  • Kao HT, Porton B, Czernik AJ, Feng J, Yiu G, Haring M, Benfenati F, Greengard P (1998) A third member of the synapsin gene family. Proc Natl Acad Sci U S A 95:4667–4672

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kao HT, Porton B, Hilfiker S, Stefani G, Pieribone VA, DeSalle R, Greengard P (1999) Molecular evolution of the synapsin gene family. J Exp Zool 285:360–377

    CAS  PubMed  Google Scholar 

  • Ketzef M, Gitler D (2014) Epileptic synapsin triple knockout mice exhibit progressive long-term aberrant plasticity in the entorhinal cortex. Cereb Cortex 24(4):996–1008

    PubMed  Google Scholar 

  • Ketzef M, Kahn J, Weissberg I, Becker AJ, Friedman A, Gitler D (2011) Compensatory network alterations upon onset of epilepsy in synapsin triple knock-out mice. Neuroscience 189:108–122

    CAS  PubMed  Google Scholar 

  • Kielland A, Erisir A, Walaas SI, Heggelund P (2006) Synapsin utilization differs among functional classes of synapses on thalamocortical cells. J Neurosci 26:5786–5793

    CAS  PubMed  Google Scholar 

  • Kim SH, Ryan TA (2010) CDK5 serves as a major control point in neurotransmitter release. Neuron 67:797–809

    CAS  PubMed Central  PubMed  Google Scholar 

  • Krabben L, Fassio A, Bhatia VK, Pechstein A, Onofri F, Fadda M, Messa M, Rao Y, Shupliakov O, Stamou D, Benfenati F, Haucke V (2011) Synapsin I senses membrane curvature by an amphipathic lipid packing sensor motif. J Neurosci 31:18149–18154

    CAS  PubMed  Google Scholar 

  • Kushner SA, Elgersma Y, Murphy GG, Jaarsma D, van Woerden GM, Hojjati MR, Cui Y, LeBoutillier JC, Marrone DF, Choi ES, De Zeeuw CI, Petit TL, Pozzo-Miller L, Silva AJ (2005) Modulation of presynaptic plasticity and learning by the H-ras/extracellular signal-regulated kinase/synapsin I signaling pathway. J Neurosci 25:9721–9734

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lakhan R, Kalita J, Misra UK, Kumari R, Mittal B (2010) Association of intronic polymorphism rs3773364 A > G in synapsin-2 gene with idiopathic epilepsy. Synapse 64:403–408

    CAS  PubMed  Google Scholar 

  • Lee HJ, Song JY, Kim JW, Jin SY, Hong MS, Park JK, Chung JH, Shibata H, Fukumaki Y (2005) Association study of polymorphisms in synaptic vesicle-associated genes, SYN2 and CPLX2, with schizophrenia. Behav Brain Funct 1:15

    PubMed Central  PubMed  Google Scholar 

  • Li L, Suzuki T, Mori N, Greengard P (1993) Identification of a functional silencer element involved in neuron-specific expression of the synapsin I gene. Proc Natl Acad Sci U S A 90:1460–1464

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li L, Chin LS, Shupliakov O, Brodin L, Sihra TS, Hvalby O, Jensen V, Zheng D, McNamara JO, Greengard P et al (1995) Impairment of synaptic vesicle clustering and of synaptic transmission, and increased seizure propensity, in synapsin I-deficient mice. Proc Natl Acad Sci U S A 92:9235–9239

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li J, Han YR, Plummer MR, Herrup K (2009) Cytoplasmic ATM in neurons modulates synaptic function. Curr Biol 19:2091–2096

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lignani G, Raimondi A, Ferrea E, Rocchi A, Paonessa F, Cesca F, Orlando M, Tkatch T, Valtorta F, Cossette P, Baldelli P, Benfenati F (2013) Epileptogenic Q555X SYN1 mutant triggers imbalances in release dynamics and short-term plasticity. Hum Mol Genet 22:2186–2199

    CAS  PubMed Central  PubMed  Google Scholar 

  • Llinas R, McGuinness TL, Leonard CS, Sugimori M, Greengard P (1985) Intraterminal injection of synapsin I or calcium/calmodulin-dependent protein kinase II alters neurotransmitter release at the squid giant synapse. Proc Natl Acad Sci U S A 82:3035–3039

    CAS  PubMed Central  PubMed  Google Scholar 

  • Llinas R, Gruner JA, Sugimori M, McGuinness TL, Greengard P (1991) Regulation by synapsin I and Ca(2+)-calmodulin-dependent protein kinase II of the transmitter release in squid giant synapse. J Physiol 436:257–282

    CAS  PubMed Central  PubMed  Google Scholar 

  • Luthi T, Haltiwanger RS, Greengard P, Bahler M (1991) Synapsins contain O-linked N-acetylglucosamine. J Neurochem 56:1493–1498

    CAS  PubMed  Google Scholar 

  • Maienschein V, Marxen M, Volknandt W, Zimmermann H (1999) A plethora of presynaptic proteins associated with ATP-storing organelles in cultured astrocytes. Glia 26:233–244

    CAS  PubMed  Google Scholar 

  • Mandell JW, Townes-Anderson E, Czernik AJ, Cameron R, Greengard P, De Camilli P (1990) Synapsins in the vertebrate retina: absence from ribbon synapses and heterogeneous distribution among conventional synapses. Neuron 5:19–33

    CAS  PubMed  Google Scholar 

  • Matsubara M, Kusubata M, Ishiguro K, Uchida T, Titani K, Taniguchi H (1996) Site-specific phosphorylation of synapsin I by mitogen-activated protein kinase and Cdk5 and its effects on physiological functions. J Biol Chem 271:21108–21113

    CAS  PubMed  Google Scholar 

  • Medrihan L, Cesca F, Raimondi A, Lignani G, Baldelli P, Benfenati F (2013) Synapsin II desynchronizes neurotransmitter release at inhibitory synapses by interacting with presynaptic calcium channels. Nat Commun 4:1512

    PubMed Central  PubMed  Google Scholar 

  • Menegon A, Verderio C, Leoni C, Benfenati F, Czernik AJ, Greengard P, Matteoli M, Valtorta F (2002) Spatial and temporal regulation of Ca2+/calmodulin-dependent protein kinase II activity in developing neurons. J Neurosci 22:7016–7026

    CAS  PubMed  Google Scholar 

  • Menegon A, Bonanomi D, Albertinazzi C, Lotti F, Ferrari G, Kao HT, Benfenati F, Baldelli P, Valtorta F (2006) Protein kinase A-mediated synapsin I phosphorylation is a central modulator of Ca2+−dependent synaptic activity. J Neurosci 26:11670–11681

    CAS  PubMed  Google Scholar 

  • Messa M, Congia S, Defranchi E, Valtorta F, Fassio A, Onofri F, Benfenati F (2010) Tyrosine phosphorylation of synapsin I by Src regulates synaptic-vesicle trafficking. J Cell Sci 123:2256–2265

    CAS  PubMed  Google Scholar 

  • Michels B, Chen YC, Saumweber T, Mishra D, Tanimoto H, Schmid B, Engmann O, Gerber B (2011) Cellular site and molecular mode of synapsin action in associative learning. Learn Mem 18:332–344

    CAS  PubMed  Google Scholar 

  • Micheva KD, Busse B, Weiler NC, O’Rourke N, Smith SJ (2010) Single-synapse analysis of a diverse synapse population: proteomic imaging methods and markers. Neuron 68:639–653

    CAS  PubMed Central  PubMed  Google Scholar 

  • Monaldi I, Vassalli M, Bachi A, Giovedi S, Millo E, Valtorta F, Raiteri R, Benfenati F, Fassio A (2010) The highly conserved synapsin domain E mediates synapsin dimerization and phospholipid vesicle clustering. Biochem J 426:55–64

    CAS  PubMed  Google Scholar 

  • Murrey HE, Gama CI, Kalovidouris SA, Luo WI, Driggers EM, Porton B, Hsieh-Wilson LC (2006) Protein fucosylation regulates synapsin Ia/Ib expression and neuronal morphology in primary hippocampal neurons. Proc Natl Acad Sci U S A 103:21–26

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nielander HB, Onofri F, Schaeffer E, Menegon A, Fesce R, Valtorta F, Greengard P, Benfenati F (1997) Phosphorylation-dependent effects of synapsin IIa on actin polymerization and network formation. Eur J Neurosci 9:2712–2722

    CAS  PubMed  Google Scholar 

  • Nuwal T, Heo S, Lubec G, Buchner E (2011) Mass spectrometric analysis of synapsins in Drosophila melanogaster and identification of novel phosphorylation sites. J Proteome Res 10:541–550

    CAS  PubMed  Google Scholar 

  • Onofri F, Giovedi S, Vaccaro P, Czernik AJ, Valtorta F, De Camilli P, Greengard P, Benfenati F (1997) Synapsin I interacts with c-Src and stimulates its tyrosine kinase activity. Proc Natl Acad Sci U S A 94:12168–12173

    CAS  PubMed Central  PubMed  Google Scholar 

  • Onofri F, Giovedi S, Kao HT, Valtorta F, Bongiorno Borbone L, De Camilli P, Greengard P, Benfenati F (2000) Specificity of the binding of synapsin I to Src homology 3 domains. J Biol Chem 275:29857–29867

    CAS  PubMed  Google Scholar 

  • Onofri F, Messa M, Matafora V, Bonanno G, Corradi A, Bachi A, Valtorta F, Benfenati F (2007) Synapsin phosphorylation by SRC tyrosine kinase enhances SRC activity in synaptic vesicles. J Biol Chem 282:15754–15767

    CAS  PubMed  Google Scholar 

  • Orenbuch A, Shalev L, Marra V, Sinai I, Lavy Y, Kahn J, Burden JJ, Staras K, Gitler D (2012a) Synapsin selectively controls the mobility of resting pool vesicles at hippocampal terminals. J Neurosci 32:3969–3980

    CAS  PubMed Central  PubMed  Google Scholar 

  • Orenbuch A, Shulman Y, Lipstein N, Bechar A, Lavy Y, Brumer E, Vasileva M, Kahn J, Barki-Harrington L, Kuner T, Gitler D (2012b) Inhibition of exocytosis or endocytosis blocks activity-dependent redistribution of synapsin. J Neurochem 120:248–258

    CAS  PubMed  Google Scholar 

  • Owe SG, Erisir A, Heggelund P (2013) Terminals of the major thalamic input to visual cortex are devoid of synapsin proteins. Neuroscience 243:115–125

    CAS  PubMed Central  PubMed  Google Scholar 

  • Paonessa F, Latifi S, Scarongella H, Cesca F, Benfenati F (2013) Specificity protein 1 (Sp1)-dependent activation of the synapsin I gene (SYN1) is modulated by RE1-silencing transcription factor (REST) and 5’-cytosine-phosphoguanine (CpG) methylation. J Biol Chem 288:3227–3239

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pera I, Stark R, Kappl M, Butt HJ, Benfenati F (2004) Using the atomic force microscope to study the interaction between two solid supported lipid bilayers and the influence of synapsin I. Biophys J 87:2446–2455

    CAS  PubMed Central  PubMed  Google Scholar 

  • Petersohn D, Schoch S, Brinkmann DR, Thiel G (1995) The human synapsin II gene promoter. Possible role for the transcription factor zif268/egr-1, polyoma enhancer activator 3, and AP2. J Biol Chem 270:24361–24369

    CAS  PubMed  Google Scholar 

  • Pieribone VA, Shupliakov O, Brodin L, Hilfiker-Rothenfluh S, Czernik AJ, Greengard P (1995) Distinct pools of synaptic vesicles in neurotransmitter release. Nature 375:493–497

    CAS  PubMed  Google Scholar 

  • Pieribone VA, Porton B, Rendon B, Feng J, Greengard P, Kao HT (2002) Expression of synapsin III in nerve terminals and neurogenic regions of the adult brain. J Comp Neurol 454:105–114

    CAS  PubMed  Google Scholar 

  • Porton B, Kao HT, Greengard P (1999) Characterization of transcripts from the synapsin III gene locus. J Neurochem 73:2266–2271

    CAS  PubMed  Google Scholar 

  • Qualmann B, Roos J, DiGregorio PJ, Kelly RB (1999) Syndapin I, a synaptic dynamin-binding protein that associates with the neural Wiskott-Aldrich syndrome protein. Mol Biol Cell 10:501–513

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rizzoli SO, Betz WJ (2005) Synaptic vesicle pools. Nat Rev Neurosci 6:57–69

    CAS  PubMed  Google Scholar 

  • Romano C, Nichols RA, Greengard P, Greene LA (1987) Synapsin I in PC12 cells. I. Characterization of the phosphoprotein and effect of chronic NGF treatment. J Neurosci 7:1294–1299

    CAS  PubMed  Google Scholar 

  • Rosahl TW, Geppert M, Spillane D, Herz J, Hammer RE, Malenka RC, Südhof TC (1993) Short-term synaptic plasticity is altered in mice lacking synapsin I. Cell 75:661–670

    CAS  PubMed  Google Scholar 

  • Rosahl TW, Spillane D, Missler M, Herz J, Selig DK, Wolff JR, Hammer RE, Malenka RC, Südhof TC (1995) Essential functions of synapsins I and II in synaptic vesicle regulation. Nature 375:488–493

    CAS  PubMed  Google Scholar 

  • Ryan TA, Li L, Chin LS, Greengard P, Smith SJ (1996) Synaptic vesicle recycling in synapsin I knock-out mice. J Cell Biol 134:1219–1227

    CAS  PubMed  Google Scholar 

  • Sadanandappa MK, Blanco Redondo B, Michels B, Rodrigues V, Gerber B, VijayRaghavan K, Buchner E, Ramaswami M (2013) Synapsin function in GABA-ergic interneurons is required for short-term olfactory habituation. J Neurosci 33:16576–16585

    CAS  PubMed  Google Scholar 

  • Sankaranarayanan S, Atluri PP, Ryan TA (2003) Actin has a molecular scaffolding, not propulsive, role in presynaptic function. Nat Neurosci 6:127–135

    CAS  PubMed  Google Scholar 

  • Sato K, Morimoto K, Suemaru S, Sato T, Yamada N (2000) Increased synapsin I immunoreactivity during long-term potentiation in rat hippocampus. Brain Res 872:219–222

    CAS  PubMed  Google Scholar 

  • Sauerwald A, Hoesche C, Oschwald R, Kilimann MW (1990) The 5’-flanking region of the synapsin I gene. A G+C-rich, TATA- and CAAT-less, phylogenetically conserved sequence with cell type-specific promoter function. J Biol Chem 265:14932–14937

    CAS  PubMed  Google Scholar 

  • Saviouk V, Moreau MP, Tereshchenko IV, Brzustowicz LM (2007) Association of synapsin 2 with schizophrenia in families of Northern European ancestry. Schizophr Res 96:100–111

    PubMed Central  PubMed  Google Scholar 

  • Schenk U, Menna E, Kim T, Passafaro M, Chang S, De Camilli P, Matteoli M (2005) A novel pathway for presynaptic mitogen-activated kinase activation via AMPA receptors. J Neurosci 25:1654–1663

    CAS  PubMed  Google Scholar 

  • Schiebler W, Jahn R, Doucet JP, Rothlein J, Greengard P (1986) Characterization of synapsin I binding to small synaptic vesicles. J Biol Chem 261:8383–8390

    CAS  PubMed  Google Scholar 

  • Schoch S, Cibelli G, Thiel G (1996) Neuron-specific gene expression of synapsin I. Major role of a negative regulatory mechanism. J Biol Chem 271:3317–3323

    CAS  PubMed  Google Scholar 

  • Shupliakov O, Bloom O, Gustafsson JS, Kjaerulff O, Low P, Tomilin N, Pieribone VA, Greengard P, Brodin L (2002) Impaired recycling of synaptic vesicles after acute perturbation of the presynaptic actin cytoskeleton. Proc Natl Acad Sci U S A 99:14476–14481

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shupliakov O, Haucke V, Pechstein A (2011) How synapsin I may cluster synaptic vesicles. Semin Cell Dev Biol 22:393–399

    CAS  PubMed  Google Scholar 

  • Sihra TS, Wang JK, Gorelick FS, Greengard P (1989) Translocation of synapsin I in response to depolarization of isolated nerve terminals. Proc Natl Acad Sci U S A 86:8108–8112

    CAS  PubMed Central  PubMed  Google Scholar 

  • Siksou L, Rostaing P, Lechaire JP, Boudier T, Ohtsuka T, Fejtova A, Kao HT, Greengard P, Gundelfinger ED, Triller A, Marty S (2007) Three-dimensional architecture of presynaptic terminal cytomatrix. J Neurosci 27:6868–6877

    CAS  PubMed  Google Scholar 

  • Silva AJ, Rosahl TW, Chapman PF, Marowitz Z, Friedman E, Frankland PW, Cestari V, Cioffi D, Südhof TC, Bourtchuladze R (1996) Impaired learning in mice with abnormal short-lived plasticity. Curr Biol 6:1509–1518

    CAS  PubMed  Google Scholar 

  • Skoblenick KJ, Argintaru N, Xu Y, Dyck BA, Basu D, Tan ML, Mazurek MF, Mishra RK (2010) Role of AP-2 alpha transcription factor in the regulation of synapsin II gene expression by dopamine D1 and D2 receptors. J Mol Neurosci 41:267–277

    CAS  PubMed  Google Scholar 

  • Skorobogatko Y, Landicho A, Chalkley RJ, Kossenkov AV, Gallo G, Vosseller K (2014) O-linked β-N-acetylglucosamine (O-GlcNAc) site thr-87 regulates synapsin I localization to synapses and size of the reserve pool of synaptic vesicles. J Biol Chem 289(6):3602–3612

    CAS  PubMed  Google Scholar 

  • Spillane DM, Rosahl TW, Südhof TC, Malenka RC (1995) Long-term potentiation in mice lacking synapsins. Neuropharmacology 34:1573–1579

    CAS  PubMed  Google Scholar 

  • Stone LM, Browning MD, Finger TE (1994) Differential distribution of the synapsins in the rat olfactory bulb. J Neurosci 14:301–309

    CAS  PubMed  Google Scholar 

  • Südhof TC (1990) The structure of the human synapsin I gene and protein. J Biol Chem 265:7849–7852

    PubMed  Google Scholar 

  • Südhof TC, Czernik AJ, Kao HT, Takei K, Johnston PA, Horiuchi A, Kanazir SD, Wagner MA, Perin MS, De Camilli P et al (1989) Synapsins: mosaics of shared and individual domains in a family of synaptic vesicle phosphoproteins. Science 245:1474–1480

    PubMed  Google Scholar 

  • Takamori S, Holt M, Stenius K, Lemke EA, Gronborg M, Riedel D, Urlaub H, Schenck S, Brugger B, Ringler P, Muller SA, Rammner B, Grater F, Hub JS, De Groot BL, Mieskes G, Moriyama Y, Klingauf J, Grubmuller H, Heuser J, Wieland F, Jahn R (2006) Molecular anatomy of a trafficking organelle. Cell 127:831–846

    CAS  PubMed  Google Scholar 

  • Tallent MK, Varghis N, Skorobogatko Y, Hernandez-Cuebas L, Whelan K, Vocadlo DJ, Vosseller K (2009) In vivo modulation of O-GlcNAc levels regulates hippocampal synaptic plasticity through interplay with phosphorylation. J Biol Chem 284:174–181

    CAS  PubMed  Google Scholar 

  • Tao-Cheng JH, Dosemeci A, Winters CA, Reese TS (2006) Changes in the distribution of calcium calmodulin-dependent protein kinase II at the presynaptic bouton after depolarization. Brain Cell Biol 35:117–124

    CAS  PubMed  Google Scholar 

  • Thiel G, Südhof TC, Greengard P (1990) Synapsin II. Mapping of a domain in the NH2-terminal region which binds to small synaptic vesicles. J Biol Chem 265:16527–16533

    CAS  PubMed  Google Scholar 

  • Torri Tarelli F, Bossi M, Fesce R, Greengard P, Valtorta F (1992) Synapsin I partially dissociates from synaptic vesicles during exocytosis induced by electrical stimulation. Neuron 9:1143–1153

    CAS  PubMed  Google Scholar 

  • Torri-Tarelli F, Villa A, Valtorta F, De Camilli P, Greengard P, Ceccarelli B (1990) Redistribution of synaptophysin and synapsin I during alpha-latrotoxin-induced release of neurotransmitter at the neuromuscular junction. J Cell Biol 110:449–459

    CAS  PubMed  Google Scholar 

  • Tyler WJ, Alonso M, Bramham CR, Pozzo-Miller LD (2002) From acquisition to consolidation: on the role of brain-derived neurotrophic factor signaling in hippocampal-dependent learning. Learn Mem 9:224–237

    PubMed Central  PubMed  Google Scholar 

  • Valente P, Casagrande S, Nieus T, Verstegen AM, Valtorta F, Benfenati F, Baldelli P (2012) Site-specific synapsin I phosphorylation participates in the expression of post-tetanic potentiation and its enhancement by BDNF. J Neurosci 32:5868–5879

    CAS  PubMed  Google Scholar 

  • Valtorta F, Villa A, Jahn R, De Camilli P, Greengard P, Ceccarelli B (1988) Localization of synapsin I at the frog neuromuscular junction. Neuroscience 24:593–603

    CAS  PubMed  Google Scholar 

  • Valtorta F, Benfenati F, Greengard P (1992a) Structure and function of the synapsins. J Biol Chem 267:7195–7198

    CAS  PubMed  Google Scholar 

  • Valtorta F, Greengard P, Fesce R, Chieregatti E, Benfenati F (1992b) Effects of the neuronal phosphoprotein synapsin I on actin polymerization. I Evidence for a phosphorylation-dependent nucleating effect. J Biol Chem 267:11281–11288

    CAS  PubMed  Google Scholar 

  • Vasileva M, Horstmann H, Geumann C, Gitler D, Kuner T (2012) Synapsin-dependent reserve pool of synaptic vesicles supports replenishment of the readily releasable pool under intense synaptic transmission. Eur J Neurosci 36:3005–3020

    PubMed  Google Scholar 

  • Vasileva M, Renden R, Horstmann H, Gitler D, Kuner T (2013) Overexpression of synapsin Ia in the rat calyx of Held accelerates short-term plasticity and decreases synaptic vesicle volume and active zone area. Front Cell Neurosci 7:270

    PubMed Central  PubMed  Google Scholar 

  • Wang S, Cesca F, Loers G, Schweizer M, Buck F, Benfenati F, Schachner M, Kleene R (2011) Synapsin I is an oligomannose-carrying glycoprotein, acts as an oligomannose-binding lectin, and promotes neurite outgrowth and neuronal survival when released via glia-derived exosomes. J Neurosci 31:7275–7290

    CAS  PubMed  Google Scholar 

  • Zucker RS, Regehr WG (2002) Short-term synaptic plasticity. Annu Rev Physiol 64:355–405

    CAS  PubMed  Google Scholar 

  • Zurmohle UM, Herms J, Schlingensiepen R, Schlingensiepen KH, Brysch W (1994) Changes of synapsin I messenger RNA expression during rat brain development. Exp Brain Res 99:17–24

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flavia Valtorta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Guarnieri, F.C., Benfenati, F., Valtorta, F. (2015). Synapsins and Synaptic Vesicle Storage. In: Mochida, S. (eds) Presynaptic Terminals. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55166-9_13

Download citation

Publish with us

Policies and ethics