Skip to main content
Log in

Tradable Credit Scheme for Control of Evolutionary Traffic Flows to System Optimum: Model and its Convergence

  • Published:
Networks and Spatial Economics Aims and scope Submit manuscript

Abstract

We propose a dynamic tradable credit scheme for control of the day-to-day evolution process of traffic flows towards the system optimum (SO) state in a traffic network with elastic demand. In the scheme, the distribution and charge of travel credits are adjusted from period to period. The interacting dynamics among day-to-day traffic flows, period-to-period credit adjustment, and day-to-day credit price is formulated as an evolutionary game model. We mathematically prove two properties of the model, i.e., the consistence of the stationary state with the SO state and the convergence of the evolutionary trajectory. Finally, numerical results on a middle-size network are presented to validate the dynamic tradable credit scheme and to demonstrate the properties and application of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adler JL, Cetin M (2001) A direct redistribution model of congestion pricing. Transp Res B 35(5):447–460

    Article  Google Scholar 

  • Aziz HMA, Ukkusuri SV, Zhan X (2017) Determining the impact of personal mobility carbon allowance schemes in transportation networks. Networks and Spatial Economics 17(2):505–545

    Article  Google Scholar 

  • Bao Y, Gao Z, Yang H, Xu M, Wang G (2017) Private financing and mobility management of road network with tradable credits. Transp Res A 97:158–176

    Google Scholar 

  • Cantarella GE, Cascetta E (1995) Dynamic processes and equilibrium in transportation networks: Towards a unifying theory. Transp Sci 29(4):305–329

    Article  Google Scholar 

  • Cantarella GE, Velonà P, Watling DP (2015) Day-to-day dynamics & equilibrium stability in a two-mode transport system with responsive bus operator strategies. Networks and Spatial Economics 15(3):485–506

    Article  Google Scholar 

  • Chu X (1999) Alternative congestion pricing schedules. Reg Sci Urban Econ 29(6):697–722

    Article  Google Scholar 

  • Daganzo CF (1995) A Pareto optimum congestion reduction scheme. Transp Res B 29(2):139–154

    Article  Google Scholar 

  • Dogterom N, Ettema D, Dijst M (2017) Tradable credits for managing car travel: A review of empirical research and relevant behavioural approaches. Transp Rev 37(3):322–343

    Article  Google Scholar 

  • Facchinei F, Pang JS (2003) Finite-dimensional variational inequalities and complementarity problems. Springer, New York City

    Google Scholar 

  • Farokhi F, Johansson KH (2015) A piecewise-constant congestion taxing policy for repeated routing games. Transp Res B 78:123–143

    Article  Google Scholar 

  • Friesz TL, Bernstein D, Kydes N (2004) Dynamic congestion pricing in disequilibrium. Networks and Spatial Economics 4(2):181–202

    Article  Google Scholar 

  • Friesz TL, Bernstein D, Mehta NJ, Tobin RL, Ganjalizadeh S (1994) Day-to-day dynamic network disequilibrium and idealized traveler information systems. Oper Res 42(6):1120–1136

    Article  Google Scholar 

  • Guo X, Yang H (2010) Pareto-improving congestion pricing and revenue refunding with multiple user classes. Transp Res B 44(8–9):972–982

    Article  Google Scholar 

  • Guo RY, Yang H, Huang HJ, Tan Z (2015) Link-based day-to-day network traffic dynamics and equilibria. Transp Res B 71:248–260

    Article  Google Scholar 

  • Guo RY, Yang H, Huang HJ, Tan Z (2016) Day-to-day flow dynamics and congestion control. Transp Sci 50(3):982–997

    Article  Google Scholar 

  • Han D, Yang H (2009) Congestion pricing in the absence of demand functions. Transp Res E 45(1):159–171

    Article  Google Scholar 

  • He X, Guo X, Liu HX (2010) A link-based day-to-day traffic assignment model. Transp Res B 44(4):597–608

    Article  Google Scholar 

  • He F, Yin Y, Shirmohammadi N, Nie Y (2013) Tradable credit schemes on networks with mixed equilibrium behaviors. Transp Res B 57:47–65

    Article  Google Scholar 

  • Higgins TJ (1994) Congestion pricing: Implementation considerations. Transp Q 48(3):287–298

    Google Scholar 

  • Huang HJ, Lam WHK (2002) Modeling and solving the dynamic user equilibrium route and departure time choice problem in network with queues. Transp Res B 36(3):253–273

    Article  Google Scholar 

  • Jin WL (2007) A dynamical system model of the traffic assignment problem. Transp Res B 41(1):32–48

    Article  Google Scholar 

  • Kockelman KM, Kalmanje S (2005) Credit-based congestion pricing: A policy proposal and the public’s response. Transp Res A 39(7–9):671–690

    Google Scholar 

  • Lahlou S, Wynter L (2017) A Nash equilibrium formulation of a tradable credits scheme for incentivizing transport choices: From next-generation public transport mode choice to HOT lanes. Transp Res B 101:185–212

    Article  Google Scholar 

  • Lindsey R (2006) Do economists reach a conclusion on road pricing? The intellectual history of an idea. Economic Journal Watch 3(2):292–379

    Google Scholar 

  • Liu Y, Nie Y (2017) A credit-based congestion management scheme in general two-mode networks with multiclass users. Networks and Spatial Economics 17(3):681–711

    Article  Google Scholar 

  • Miralinaghi M, Peeta S (2016) Multi-period equilibrium modeling planning framework for tradable credit schemes. Transp Res E 93:177–198

    Article  Google Scholar 

  • Nagurney A, Zhang D (1997) Projected dynamical systems in the formulation, stability analysis, and computation of fixed-demand traffic network equilibria. Transp Sci 31(2):147–158

    Article  Google Scholar 

  • Nie Y (2012) Transaction costs and tradable mobility credits. Transp Res B 46(1):189–203

    Article  Google Scholar 

  • Nie Y (2015) A new tradable credit scheme for the morning commute problem. Networks and Spatial Economics 15(3):719–741

    Article  Google Scholar 

  • Nie Y, Yin Y (2013) Managing rush hour travel choices with tradable credit scheme. Transp Res B 50:1–19

    Article  Google Scholar 

  • Peeta S, Yang TH (2003) Stability issues for dynamic traffic assignment. Automatica 39(1):21–34

    Article  Google Scholar 

  • Raux C (2004) The use of transferable permits in transport policy. Transp Res D 9(3):185–197

    Article  Google Scholar 

  • Sandholm WH (2001) Potential games with continuous player sets. J Econ Theory 97(1):81–108

    Article  Google Scholar 

  • Sandholm WH (2002) Evolutionary implementation and congestion pricing. Rev Econ Stud 69(3):667–689

    Article  Google Scholar 

  • Seik FT (1998) A unique demand management instrument in urban transport: The vehicle quota system in Singapore. Cities 15(1):27–39

    Article  Google Scholar 

  • Sheffi Y (1985) Urban transportation networks: equilibrium analysis with mathematical programming methods. Prentice-Hall, Inc., Englewood Cliffs

    Google Scholar 

  • Smith MJ (1983) The existence and calculation of traffic equilibria. Transp Res B 17(4):291–301

    Article  Google Scholar 

  • Smith MJ (1984) The stability of a dynamic model of traffic assignment – An application of a method of Lyapunov. Transp Sci 18(3):259–304

    Article  Google Scholar 

  • Smith M, Mounce R (2011) A splitting rate model of traffic re-routing and traffic control. Transp Res B 45(9):1389–1409

    Article  Google Scholar 

  • Solé-Ribalta A, Gómez S, Arenas A (2018) Decongestion of urban areas with hotspot pricing. Networks and Spatial Economics 18(1):33–50

    Article  Google Scholar 

  • Tian LJ, Yang H, Huang HJ (2013) Tradable credit schemes for managing bottleneck congestion and modal split with heterogeneous users. Transp Res E 54:1–13

    Article  Google Scholar 

  • Trench WF (2003) Introduction to Real Analysis. Prentice Hall, New Jersey

    Google Scholar 

  • Tsekeris T, Voss S (2009) Design and evaluation of road pricing: State-of-the-art and methodological advances. Netnomics 10(1):5–52

    Article  Google Scholar 

  • Verhoef E, Nijkamp P, Rietveld P (1997) Tradable permits: Their potential in the regulation of road transport externalities. Environment and Planning B 24(4):527–548

    Article  Google Scholar 

  • Viegas JM (2001) Making urban road pricing acceptable and effective: Searching for quality and equity in urban mobility. Transp Policy 8(4):289–294

    Article  Google Scholar 

  • Wang G, Gao Z, Xu M, Sun H (2014) Models and a relaxation algorithm for continuous network design problem with a tradable credit scheme and equity constraints. Comput Oper Res 41:252–261

    Article  Google Scholar 

  • Wang X, Yang H (2012) Bisection-based trial-and-error implementation of marginal cost pricing and tradable credit schemes. Transp Res B 46(9):1085–1096

    Article  Google Scholar 

  • Wang X, Yang H, Han D, Liu W (2014) Trial and error method for optimal tradable credit schemes: The network case. J Adv Transp 48(6):685–700

    Article  Google Scholar 

  • Wang X, Yang H, Zhu D, Li C (2012) Tradable travel credits for congestion management with heterogeneous users. Transp Res E 48(2):426–437

    Article  Google Scholar 

  • Wang H, Zhang X (2016) Joint implementation of tradable credit and road pricing in public-private partnership networks considering mixed equilibrium behaviors. Transp Res E 94:158–170

    Article  Google Scholar 

  • Watling DP, Cantarella GE (2013) Modelling sources of variation in transportation systems: Theoretical foundations of day-to-day dynamic models. Transportmetrica B: Transport. Dynamics 1(1):3–32

    Google Scholar 

  • Watling DP, Cantarella GE (2015) Model representation & decision-making in an ever-changing world: The role of stochastic process models of transportation systems. Networks and Spatial Economics 15(3):843–882

    Article  Google Scholar 

  • Watling D, Hazelton ML (2003) The dynamics and equilibria of day-to-day assignment models. Networks and Spatial Economics 3(3):349–370

    Article  Google Scholar 

  • Wu D, Yin Y, Lawphongpanich S (2011) Pareto-improving congestion pricing on multimodal transportation networks. Eur J Oper Res 210(3):660–669

    Article  Google Scholar 

  • Wu D, Yin Y, Lawphongpanich S, Yang H (2012) Design of more equitable congestion pricing and tradable credit schemes for multimodal transportation networks. Transp Res B 46(9):1273–1287

    Article  Google Scholar 

  • Xiao L, Lo HK (2015) Combined route choice and adaptive traffic control in a day-to-day dynamical system. Networks and Spatial Economics 15(3):697–717

    Article  Google Scholar 

  • Xiao F, Qian Z, Zhang HM (2013) Managing bottleneck congestion with tradable credits. Transp Res B 56:1–14

    Article  Google Scholar 

  • Yang H, Huang HJ (2005) Mathematical and Economic Theory of Road Pricing. Elsevier, Oxford

    Book  Google Scholar 

  • Yang H, Meng Q, Lee DH (2004) Trial-and-error implementation of marginal-cost pricing on networks in the absence of demand functions. Transp Res B 38(6):477–493

    Article  Google Scholar 

  • Yang H, Wang X (2011) Managing network mobility with tradable credits. Transp Res B 45(3):580–594

    Article  Google Scholar 

  • Yang H, Xu W, He BS, Meng Q (2010) Road pricing for congestion control with unknown demand and cost functions. Transp Res C 18(2):157–175

    Article  Google Scholar 

  • Yang F, Yin Y, Lu J (2007) Steepest descent day-to-day dynamic toll. Transp Res Rec 2039:83–90

    Article  Google Scholar 

  • Yang F, Zhang D (2009) Day-to-day stationary link flow pattern. Transp Res B 43(1):119–126

    Article  Google Scholar 

  • Ye H, Yang H (2013) Continuous price and flow dynamics of tradable mobility credits. Transp Res B 57:436–450

    Article  Google Scholar 

  • Ye H, Yang H, Tan Z (2015) Learning marginal-cost pricing via trial-and-error procedure with day-to-day flow dynamics. Transportation Research Part B 81. Part 3:794–807

    Article  Google Scholar 

  • Zhang WY, Guan W, Ma JH, Tian JF (2015) A nonlinear pairwise swapping dynamics to model the selfish rerouting evolutionary game. Networks and Spatial Economics 15(4):1075–1092

    Article  Google Scholar 

  • Zhang D, Nagurney A (1996) On the local and global stability of a travel route choice adjustment process. Transp Res B 30(4):245–262

    Article  Google Scholar 

  • Zhang D, Nagurney A, Wu J (2001) On the equivalence between stationary link flow patterns and traffic network equilibria. Transp Res B 35(8):731–748

    Article  Google Scholar 

  • Zhang X, Yang H, Huang HJ (2011) Improving travel efficiency by parking permits distribution and trading. Transp Res B 45(7):1018–1034

    Article  Google Scholar 

  • Zhao X, Wan C, Bi J (2018) Day-to-day assignment models and traffic dynamics under information provision. Networks and Spatial Economics. https://doi.org/10.1007/s11067-018-9386-1

  • Zhou B, Bliemer M, Yang H, He J (2015) A trial-and-error congestion pricing scheme for networks with elastic demand and link capacity constraints. Transp Res B 72:77–92

    Article  Google Scholar 

  • Zhu DL, Yang H, Li CM, Wang XL (2015) Properties of the multiclass traffic network equilibria under a tradable credit scheme. Transp Sci 49(3):519–534

    Article  Google Scholar 

Download references

Acknowledgements

The work described in this paper was jointly supported by grants from the National Natural Science Foundation of China (71622005), the National Basic Research Program of China (2012CB725401), the Research Grants Council of the Hong Kong Special Administrative Region of China (HKUST16211114), and the Natural Science Foundation of Inner Mongolia of China (2014JQ03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ren-Yong Guo.

Proofs of theorems

Proofs of theorems

1.1 Proof of Theorem 1

Proof

First, we prove the necessity, i.e., if the trajectory of the dynamical system has arrived at the stationary state on day m0M, then the corresponding flow and demand pattern \( \left({\mathbf{x}}^{\left({m}_0M\right)},{\mathbf{f}}^{\left({m}_0M\right)},{\mathbf{d}}^{\left({m}_0M\right)}\right) \) is an SO flow and demand pattern, the credit charge \( {\mathbf{k}}^{\left({m}_0M\right)}=\nabla \mathbf{c}{\left({\mathbf{x}}^{\left({m}_0M\right)}\right)}^{\mathrm{T}}{\mathbf{x}}^{\left({m}_0M\right)} \), and the unit credit price \( {p}^{\left({m}_0M\right)}=1 \). By formula (10), if \( {\mathbf{k}}^{\left({m}_0M\right)}={\mathbf{k}}^{\left({m}_0M+1\right)}={\mathbf{k}}^{\left({m}_0M+2\right)}=\cdots \), then

$$ {\mathbf{k}}^{\left({m}_0M\right)}={\left[{\mathbf{k}}^{\left({m}_0M\right)}+{\rho}^{\left({m}_0M\right)}\left(\nabla \mathbf{c}{\left({\mathbf{x}}^{\left({m}_0M\right)}\right)}^{\mathrm{T}}{\mathbf{x}}^{\left({m}_0M\right)}-{\mathbf{k}}^{\left({m}_0M\right)}\right)\right]}_{+}. $$
(37)

According to Lemma 1, for any a ∈ L, the following inequalities hold

$$ \left({k}_a^{\left({m}_0M\right)}-\left({k}_a^{\left({m}_0M\right)}+{\rho}^{\left({m}_0M\right)}\left({c}_a^{\prime}\left({x}_a^{\left({m}_0M\right)}\right){x}_a^{\left({m}_0M\right)}-{k}_a^{\left({m}_0M\right)}\right)\right)\right)\left({k}_a^{\left({m}_0M\right)}-0\right)\le 0, $$
(38)
$$ \left({k}_a^{\left({m}_0M\right)}-\left({k}_a^{\left({m}_0M\right)}+{\rho}^{\left({m}_0M\right)}\left({c}_a^{\prime}\left({x}_a^{\left({m}_0M\right)}\right){x}_a^{\left({m}_0M\right)}-{k}_a^{\left({m}_0M\right)}\right)\right)\right)\left({k}_a^{\left({m}_0M\right)}-2{k}_a^{\left({m}_0M\right)}\right)\le 0, $$
(39)
$$ \left({k}_a^{\left({m}_0M\right)}-\left({k}_a^{\left({m}_0M\right)}+{\rho}^{\left({m}_0M\right)}\left({c}_a^{\prime}\left({x}_a^{\left({m}_0M\right)}\right){x}_a^{\left({m}_0M\right)}-{k}_a^{\left({m}_0M\right)}\right)\right)\right)\left({k}_a^{\left({m}_0M\right)}-\left({k}_a^{\left({m}_0M\right)}+1\right)\right)\le 0. $$
(40)

It follows from inequalities (38) and (39) that

$$ \left({c}_a^{\prime}\left({x}_a^{\left({m}_0M\right)}\right){x}_a^{\left({m}_0M\right)}-{k}_a^{\left({m}_0M\right)}\right){k}_a^{\left({m}_0M\right)}=0, $$
(41)

and it follows from inequality (40) that

$$ {c}_a^{\prime}\left({x}_a^{\left({m}_0M\right)}\right){x}_a^{\left({m}_0M\right)}-{k}_a^{\left({m}_0M\right)}\le 0. $$
(42)

For any a ∈ L, \( {c}_a^{\prime}\left({x}_a^{\left({m}_0M\right)}\right){x}_a^{\left({m}_0M\right)}\ge 0 \) under the assumption of non-decreasing link cost function ca. When either \( {c}_a^{\prime}\left({x}_a^{\left({m}_0M\right)}\right){x}_a^{\left({m}_0M\right)}=0 \) or >0, combining relationships (41) and (42) yields \( {k}_a^{\left({m}_0M\right)}={c}_a^{\prime}\left({x}_a^{\left({m}_0M\right)}\right){x}_a^{\left({m}_0M\right)} \).

If \( {\mathbf{x}}^{\left({m}_0M\right)}={\mathbf{x}}^{\left({m}_0M+1\right)}={\mathbf{x}}^{\left({m}_0M+2\right)}=\cdots \) and \( {\mathbf{k}}^{\left({m}_0M\right)}={\mathbf{k}}^{\left({m}_0M+1\right)}={\mathbf{k}}^{\left({m}_0M+2\right)}=\cdots \), then it is obtained that \( {\varPhi}^{\left({m}_0M+1\right)}=0 \) by formulae (11) and (13). Therefore, according to formula (12), if \( {p}^{\left({m}_0M\right)}={p}^{\left({m}_0M+1\right)}={p}^{\left({m}_0M+2\right)}=\cdots \), then

$$ {p}^{\left({m}_0M\right)}={\left[{p}^{\left({m}_0M\right)}+{\zeta}^{\left({m}_0M+1\right)}\left(1-{p}^{\left({m}_0M\right)}\right)\right]}_{+}. $$
(43)

Similar to the derivation of formulae (38) to (42), by Lemma 1, we have \( {p}^{\left({m}_0M\right)}=1 \).

It follows from formulae (7) and (8) that, if \( {\mathbf{x}}^{\left({m}_0M+1\right)}={\mathbf{x}}^{\left({m}_0M\right)} \) and \( {\mathbf{d}}^{\left({m}_0M+1\right)}={\mathbf{d}}^{\left({m}_0M\right)} \), then

$$ {\left(\mathbf{y}-{\mathbf{x}}^{\left({m}_0M\right)}\right)}^{\mathrm{T}}\left(\mathbf{c}\left({\mathbf{x}}^{\left({m}_0M\right)}\right)+{p}^{\left({m}_0M+1\right)}{\mathbf{k}}^{\left({m}_0M+1\right)}\right)-{\left(\mathbf{e}-{\mathbf{d}}^{\left({m}_0M\right)}\right)}^{\mathrm{T}}\mathbf{B}\left({\mathbf{d}}^{\left({m}_0M\right)}\right)\ge 0, $$
(44)

\( \forall \left(\mathbf{y},\mathbf{e}\right)\in {\varPsi}_{\mathrm{LD}}^{\left({m}_0M\right)} \). Namely, \( \left({\mathbf{x}}^{\left({m}_0M\right)},{\mathbf{d}}^{\left({m}_0M\right)}\right) \) solves the following mathematical programming problem

$$ \underset{\left(\mathbf{y},\mathbf{e}\right)\in {\varPsi}_{\mathrm{LD}}^{\left({m}_0M\right)}}{\min }{\left(\mathbf{c}\left({\mathbf{x}}^{\left({m}_0M\right)}\right)+{p}^{\left({m}_0M+1\right)}{\mathbf{k}}^{\left({m}_0M+1\right)}\right)}^{\mathrm{T}}\mathbf{y}-\mathbf{B}{\left({\mathbf{d}}^{\left({m}_0M\right)}\right)}^{\mathrm{T}}\mathbf{e}. $$
(45)

The period length M ≥ 2 and also the total number of credits consumed in each period at the stationary state is positive. Thus, we have

$$ {T}^{\left({m}_0+1\right)}=M{\left({\mathbf{k}}^{\left({m}_0M+1\right)}\right)}^{\mathrm{T}}{\mathbf{x}}^{\left({m}_0M\right)}>{\left({\mathbf{k}}^{\left({m}_0M+1\right)}\right)}^{\mathrm{T}}{\mathbf{x}}^{\left({m}_0M\right)}. $$
(46)

That is to say, the flow \( {\mathbf{x}}^{\left({m}_0M\right)} \) is not on the surface \( {\left({\mathbf{k}}^{\left({m}_0M+1\right)}\right)}^{\mathrm{T}}\mathbf{y}={T}^{\left({m}_0+1\right)} \). It immediately follows that \( \left({\mathbf{x}}^{\left({m}_0M\right)},{\mathbf{d}}^{\left({m}_0M\right)}\right) \) also solves the following linear programming problem

$$ \underset{\left(\mathbf{y},\mathbf{e}\right)\in {\varOmega}_{\mathrm{LD}}}{\min }{\left(\mathbf{c}\left({\mathbf{x}}^{\left({m}_0M\right)}\right)+{p}^{\left({m}_0M+1\right)}{\mathbf{k}}^{\left({m}_0M+1\right)}\right)}^{\mathrm{T}}\mathbf{y}-\mathbf{B}{\left({\mathbf{d}}^{\left({m}_0M\right)}\right)}^{\mathrm{T}}\mathbf{e}. $$
(47)

Therefore, \( \left({\mathbf{x}}^{\left({m}_0M\right)},{\mathbf{d}}^{\left({m}_0M\right)}\right) \) satisfies the following Karush–Kuhn–Tucker (KKT) conditions:

$$ {\left({\boldsymbol{\Delta}}^{\mathrm{T}}\left(\mathbf{c}\left({\mathbf{x}}^{\left({m}_0M\right)}\right)+{p}^{\left({m}_0M+1\right)}{\mathbf{k}}^{\left({m}_0M+1\right)}\right)-{\boldsymbol{\Lambda}}^{\mathrm{T}}\boldsymbol{\upmu} \right)}^{\mathrm{T}}{\mathbf{f}}^{\left({m}_0M\right)}=0, $$
(48)
$$ {\boldsymbol{\Delta}}^{\mathrm{T}}\left(\mathbf{c}\left({\mathbf{x}}^{\left({m}_0M\right)}\right)+{p}^{\left({m}_0M+1\right)}{\mathbf{k}}^{\left({m}_0M+1\right)}\right)-{\boldsymbol{\Lambda}}^{\mathrm{T}}\boldsymbol{\upmu} \ge \mathbf{0},{\mathbf{f}}^{\left({m}_0M\right)}\ge \mathbf{0}, $$
(49)
$$ {\left(-\mathbf{B}\left({\mathbf{d}}^{\left({m}_0M\right)}\right)+\boldsymbol{\upmu} +\tilde{\boldsymbol{\upmu}}\right)}^{\mathrm{T}}{\mathbf{d}}^{\left({m}_0M\right)}=0, $$
(50)
$$ -\mathbf{B}\left({\mathbf{d}}^{\left({m}_0M\right)}\right)+\boldsymbol{\upmu} +\tilde{\boldsymbol{\upmu}}\ge \mathbf{0},{\mathbf{d}}^{\left({m}_0M\right)}\ge \mathbf{0} $$
(51)
$$ {\left(\overline{\mathbf{d}}-{\mathbf{d}}^{\left({m}_0M\right)}\right)}^{\mathrm{T}}\tilde{\boldsymbol{\upmu}}=0, $$
(52)
$$ \overline{\mathbf{d}}-{\mathbf{d}}^{\left({m}_0M\right)}\ge \mathbf{0},\tilde{\boldsymbol{\upmu}}\ge \mathbf{0}, $$
(53)

where μ = (μw, w ∈ W)T and \( \tilde{\boldsymbol{\upmu}}={\left({\tilde{\mu}}_w,w\in W\right)}^{\mathrm{T}} \) are the Lagrange multipliers associated with the constraints d = Λf and \( \mathbf{d}\le \overline{\mathbf{d}} \), respectively. Applying \( {\mathbf{k}}^{\left({m}_0M+1\right)}=\nabla \mathbf{c}{\left({\mathbf{x}}^{\left({m}_0M\right)}\right)}^{\mathrm{T}}{\mathbf{x}}^{\left({m}_0M\right)} \) and \( {p}^{\left({m}_0M+1\right)}=1 \) to conditions (48) and (49) then leads to

$$ {\left({\boldsymbol{\Delta}}^{\mathrm{T}}\left(\mathbf{c}\left({\mathbf{x}}^{\left({m}_0M\right)}\right)+\nabla \mathbf{c}{\left({\mathbf{x}}^{\left({m}_0M\right)}\right)}^{\mathrm{T}}{\mathbf{x}}^{\left({m}_0M\right)}\right)-{\boldsymbol{\Lambda}}^{\mathrm{T}}\boldsymbol{\upmu} \right)}^{\mathrm{T}}{\mathbf{f}}^{\left({m}_0M\right)}=0, $$
(54)
$$ {\boldsymbol{\Delta}}^{\mathrm{T}}\left(\mathbf{c}\left({\mathbf{x}}^{\left({m}_0M\right)}\right)+\nabla \mathbf{c}{\left({\mathbf{x}}^{\left({m}_0M\right)}\right)}^{\mathrm{T}}{\mathbf{x}}^{\left({m}_0M\right)}\right)-{\boldsymbol{\Lambda}}^{\mathrm{T}}\boldsymbol{\upmu} \ge \mathbf{0},{\mathbf{f}}^{\left({m}_0M\right)}\ge \mathbf{0}, $$
(55)

Obviously, conditions (50) to (55) are just an alternative expression of the SO conditions, with \( \left({\mathbf{x}}^{\left({m}_0M\right)},{\mathbf{f}}^{\left({m}_0M\right)},{\mathbf{d}}^{\left({m}_0M\right)}\right) \) representing an SO flow and demand pattern. Thus, the necessity holds.

Second, we prove the sufficiency, i.e., if the corresponding flow and demand pattern \( \left({\mathbf{x}}^{\left({m}_0M\right)},{\mathbf{f}}^{\left({m}_0M\right)},{\mathbf{d}}^{\left({m}_0M\right)}\right) \) is an SO flow and demand pattern, the credit charge \( {\mathbf{k}}^{\left({m}_0M\right)}=\nabla \mathbf{c}{\left({\mathbf{x}}^{\left({m}_0M\right)}\right)}^{\mathrm{T}}{\mathbf{x}}^{\left({m}_0M\right)} \), and the unit credit price \( {p}^{\left({m}_0M\right)}=1 \), then the trajectory of the dynamical system has arrived at the stationary state on day m0M. It immediately follows from formula (10) that, if \( {\mathbf{k}}^{\left({m}_0M\right)}=\nabla \mathbf{c}{\left({\mathbf{x}}^{\left({m}_0M\right)}\right)}^{\mathrm{T}}{\mathbf{x}}^{\left({m}_0M\right)} \), then

$$ {\mathbf{k}}^{\left({m}_0M+1\right)}={\mathbf{k}}^{\left({m}_0M\right)}=\nabla \mathbf{c}{\left({\mathbf{x}}^{\left({m}_0M\right)}\right)}^{\mathrm{T}}{\mathbf{x}}^{\left({m}_0M\right)}. $$

It can be seen from formula (12) that \( {p}^{\left({m}_0M+1\right)}={p}^{\left({m}_0M\right)}=1 \).

If the flow and demand pattern \( \left({\mathbf{x}}^{\left({m}_0M\right)},{\mathbf{f}}^{\left({m}_0M\right)},{\mathbf{d}}^{\left({m}_0M\right)}\right) \) is an SO flow and demand pattern, then it satisfies conditions (50) to (55). Substituting \( \nabla \mathbf{c}{\left({\mathbf{x}}^{\left({m}_0M\right)}\right)}^{\mathrm{T}}{\mathbf{x}}^{\left({m}_0M\right)}={\mathbf{k}}^{\left({m}_0M+1\right)} \) and \( 1={p}^{\left({m}_0M+1\right)} \) into conditions (54) and (55) then results in conditions (48) and (49). Therefore, \( \left({\mathbf{x}}^{\left({m}_0M\right)},{\mathbf{d}}^{\left({m}_0M\right)}\right) \) solves the linear programming problem (47). Associated with the fact that \( \left({\mathbf{x}}^{\left({m}_0M\right)},{\mathbf{d}}^{\left({m}_0M\right)}\right)\in {\varPsi}_{\mathrm{LD}}^{\left({m}_0M\right)}\subset {\varOmega}_{\mathrm{LD}} \), it is obtained that \( \left({\mathbf{x}}^{\left({m}_0M\right)},{\mathbf{d}}^{\left({m}_0M\right)}\right) \) also solves the mathematical programming problem (45), and hence \( {\mathbf{x}}^{\left({m}_0M+1\right)}={\mathbf{x}}^{\left({m}_0M\right)} \) and \( {\mathbf{d}}^{\left({m}_0M+1\right)}={\mathbf{d}}^{\left({m}_0M\right)} \).

It can be seen from formula (10) that \( {\mathbf{k}}^{\left({m}_0M+2\right)}={\mathbf{k}}^{\left({m}_0M+1\right)} \). By formulae (11) and (13), we have

$$ {\varPhi}^{\left({m}_0M+1\right)}={\left({\mathbf{k}}^{\left({m}_0M+1\right)}\right)}^{\mathrm{T}}{\mathbf{x}}^{\left({m}_0M+1\right)}-\frac{M{\left({\mathbf{k}}^{\left({m}_0M+1\right)}\right)}^{\mathrm{T}}{\mathbf{x}}^{\left({m}_0M\right)}-{\left({\mathbf{k}}^{\left({m}_0M+1\right)}\right)}^{\mathrm{T}}{\mathbf{x}}^{\left({m}_0M+1\right)}}{M-1}=0 $$

Therefore, it immediately follows from formula (12) that \( {p}^{\left({m}_0M+2\right)}={p}^{\left({m}_0M+1\right)} \). Similar to the derivation of \( {\mathbf{x}}^{\left({m}_0M+1\right)}={\mathbf{x}}^{\left({m}_0M\right)} \) and \( {\mathbf{d}}^{\left({m}_0M+1\right)}={\mathbf{d}}^{\left({m}_0M\right)} \), we can obtain \( {\mathbf{x}}^{\left({m}_0M+2\right)}={\mathbf{x}}^{\left({m}_0M+1\right)} \) and \( {\mathbf{d}}^{\left({m}_0M+2\right)}={\mathbf{d}}^{\left({m}_0M+1\right)} \). In this way, it follows that

$$ {\displaystyle \begin{array}{l}{\mathbf{k}}^{\left({m}_0M\right)}={\mathbf{k}}^{\left({m}_0M+1\right)}={\mathbf{k}}^{\left({m}_0M+2\right)}=\cdots, {p}^{\left({m}_0M\right)}={p}^{\left({m}_0M+1\right)}={p}^{\left({m}_0M+2\right)}=\cdots, \\ {}{\mathbf{x}}^{\left({m}_0M\right)}={\mathbf{x}}^{\left({m}_0M+1\right)}={\mathbf{x}}^{\left({m}_0M+2\right)}=\cdots, {\mathbf{d}}^{\left({m}_0M\right)}={\mathbf{d}}^{\left({m}_0M+1\right)}={\mathbf{d}}^{\left({m}_0M+2\right)}=\cdots, \end{array}} $$

Therefore, the sufficiency holds.

1.2 Proof of Theorem 2

Proof

On one hand, if (x((m − 1)M), d((m − 1)M), k((m − 1)M), p((m − 1)M)) is a stationary link flow, travel demand, credit charge, and credit price pattern, i.e., the trajectory of the dynamical system has entered the stationary state on day (m − 1)M, then both sides of inequality (17) equal zero and the inequality holds. On the other hand, according to Lemma 1, it is obtained from formulae (10) and (12) that

$$ {\displaystyle \begin{array}{l}{\left({\mathbf{k}}^{\left(\left(m-1\right)M+1\right)}-{\mathbf{k}}^{\left(\left(m-1\right)M\right)}\right)}^{\mathrm{T}}\left({\mathbf{k}}^{\left(\left(m-1\right)M\right)}-\nabla \mathbf{c}{\left({\mathbf{x}}^{\left(\left(m-1\right)M\right)}\right)}^{\mathrm{T}}{\mathbf{x}}^{\left(\left(m-1\right)M\right)}\right)\\ {}\le -\frac{1}{\rho^{\left(\left(m-1\right)M\right)}}{\left\Vert {\mathbf{k}}^{\left(\left(m-1\right)M+1\right)}-{\mathbf{k}}^{\left(\left(m-1\right)M\right)}\right\Vert}^2\end{array}} $$

and

$$ {\displaystyle \begin{array}{l}\left({p}^{\left(\left(m-1\right)M+i\right)}-{p}^{\left(\left(m-1\right)M+i-1\right)}\right)\left({p}^{\left(\left(m-1\right)M+i-1\right)}-\exp \left(\xi {\varPhi}^{\left(\left(m-1\right)M+i-1\right)}\right)\right)\\ {}\le -\frac{1}{\zeta^{\left(\left(m-1\right)M+i-1\right)}}{\left({p}^{\left(\left(m-1\right)M+i\right)}-{p}^{\left(\left(m-1\right)M+i-1\right)}\right)}^2,i=2,3,\cdots, M.\end{array}} $$

If (x((m − 1)M), d((m − 1)M), k((m − 1)M), p((m − 1)M)) is not a stationary link flow, travel demand, credit charge, and credit price pattern, i.e., the sequence of the dynamical system is in a non-stationary state till day (m − 1)M, then

$$ {\left({\mathbf{k}}^{\left(\left(m-1\right)M+1\right)}-{\mathbf{k}}^{\left(\left(m-1\right)M\right)}\right)}^{\mathrm{T}}\left({\mathbf{k}}^{\left(\left(m-1\right)M\right)}-\nabla \mathbf{c}{\left({\mathbf{x}}^{\left(\left(m-1\right)M\right)}\right)}^{\mathrm{T}}{\mathbf{x}}^{\left(\left(m-1\right)M\right)}\right)<0, $$

or equivalently

$$ \sum \limits_{i=2}^M\left({p}^{\left(\left(m-1\right)M+i\right)}-{p}^{\left(\left(m-1\right)M+i-1\right)}\right)\left({p}^{\left(\left(m-1\right)M+i-1\right)}-\exp \left(\xi {\varPhi}^{\left(\left(m-1\right)M+i-1\right)}\right)\right)<0, $$

or equivalently

$$ {\displaystyle \begin{array}{l}\sum \limits_{i=1}^M\Big({\left({\mathbf{x}}^{\left(\left(m-1\right)M+i\right)}-{\mathbf{x}}^{\left(\left(m-1\right)M+i-1\right)}\right)}^{\mathrm{T}}\left(\mathbf{c}\left({\mathbf{x}}^{\left(\left(m-1\right)M+i-1\right)}\right)+{p}^{\left(\left(m-1\right)M+i\right)}{\mathbf{k}}^{\left(\left(m-1\right)M+i\right)}\right)\\ {}-{\left({\mathbf{d}}^{\left(\left(m-1\right)M+i\right)}-{\mathbf{d}}^{\left(\left(m-1\right)M+i-1\right)}\right)}^{\mathrm{T}}\mathbf{B}\left({\mathbf{d}}^{\left(\left(m-1\right)M+i-1\right)}\right)\Big)<0.\end{array}} $$

It immediately follows that Z(x((m − 1)M), d((m − 1)M), k((m − 1)M), p((m − 1)M)) < 0, i.e.,

$$ -\beta Z\left({\mathbf{x}}^{\left(\left(m-1\right)M\right)},{\mathbf{d}}^{\left(\left(m-1\right)M\right)},{\mathbf{k}}^{\left(\left(m-1\right)M\right)},{p}^{\left(\left(m-1\right)M\right)}\right)>0 $$

Thus, a group of credit charge k(mM + 1) and credit prices p(mM + 2), p(mM + 3), ⋯, p((m + 1)M) can be found so that inequality (17) holds.

To guarantee that inequality (17) holds, we define that a group of credit charge k(mM + 1) and credit prices p(mM + 2), p(mM + 3), ⋯, p((m + 1)M) (m = 1, 2, ⋯) satisfy

$$ {\displaystyle \begin{array}{l}{\left({\mathbf{k}}^{\left( mM+1\right)}-{\mathbf{k}}^{(mM)}\right)}^{\mathrm{T}}\left({\mathbf{k}}^{\left( mM+1\right)}+{p}^{(mM)}{\mathbf{x}}^{(mM)}+\nabla \mathbf{c}{\left({\mathbf{x}}^{(mM)}\right)}^{\mathrm{T}}{\mathbf{x}}^{(mM)}\right)\\ {}\le -\frac{\beta }{M}Z\left({\mathbf{x}}^{\left(\left(m-1\right)M\right)},{\mathbf{d}}^{\left(\left(m-1\right)M\right)},{\mathbf{k}}^{\left(\left(m-1\right)M\right)},{p}^{\left(\left(m-1\right)M\right)}\right)\end{array}} $$
(56)

and

$$ {\displaystyle \begin{array}{l}\left({p}^{\left( mM+i\right)}-{p}^{\left( mM+i-1\right)}\right)\left({p}^{\left( mM+i\right)}+{\left({\mathbf{k}}^{\left( mM+i-1\right)}\right)}^{\mathrm{T}}{\mathbf{x}}^{\left( mM+i-1\right)}+\exp \left(\xi {\varPhi}^{\left( mM+i-1\right)}\right)\right)\\ {}\le -\frac{\beta }{M}Z\left({\mathbf{x}}^{\left(\left(m-1\right)M\right)},{\mathbf{d}}^{\left(\left(m-1\right)M\right)},{\mathbf{k}}^{\left(\left(m-1\right)M\right)},{p}^{\left(\left(m-1\right)M\right)}\right),\mathrm{for}\;i=2,3,\cdots, M.\end{array}} $$
(57)

The link travel cost functions are non-decreasing, and hence c(x)Tx ≥ 0 for any x ∈ ΩL. Let the parameter ρ(mM) ∈ (0, 1] (m = 0, 1, 2, ⋯) in formula (10). Thus, if k(0) ≥ 0, then k(mM + 1) (m = 0, 1, 2, ⋯) can be written as

$$ {\mathbf{k}}^{\left( mM+1\right)}={\mathbf{k}}^{(mM)}+{\rho}^{(mM)}\left(\nabla \mathbf{c}{\left({\mathbf{x}}^{(mM)}\right)}^{\mathrm{T}}{\mathbf{x}}^{(mM)}-{\mathbf{k}}^{(mM)}\right). $$
(58)

Substituting formula (58) into inequality (56), inequality (56) can be expressed in another form

$$ {\overline{a}}^{(mM)}{\left({\rho}^{(mM)}\right)}^2+{\overline{b}}^{(mM)}{\rho}^{(mM)}+{\overline{c}}^{(mM)}\le 0,m=1,2,\cdots . $$
(59)

Let the parameter ζ(mM + i − 1) ∈ (0, 1] (m = 0, 1, 2, ⋯ and i = 2, 3, ⋯, M) in formula (12). Therefore, if p(0) ≥ 0, then p(mM + i) (m = 0, 1, 2, ⋯ and i = 2, 3, ⋯, M) can be written as

$$ {p}^{\left( mM+i\right)}={p}^{\left( mM+i-1\right)}+{\zeta}^{\left( mM+i-1\right)}\left(\exp \left(\xi {\varPhi}^{\left( mM+i-1\right)}\right)-{p}^{\left( mM+i-1\right)}\right). $$
(60)

Substituting formula (60) into inequality (57), inequality (57) can be expressed in another form

$$ {\tilde{a}}^{\left( mM+i-1\right)}{\left({\zeta}^{\left( mM+i-1\right)}\right)}^2+{\tilde{b}}^{\left( mM+i-1\right)}{\zeta}^{\left( mM+i-1\right)}+{\overline{c}}^{(mM)}\le 0,m=1,2,\cdots \mathrm{and}\;i=2,3,\cdots, M. $$
(61)

Thus, to guarantee that Assumption 2 holds, when k(mM) ≠ c(x(mM))Tx(mM), the parameter ρ(mM) (m = 1, 2, ⋯) should take a value simultaneously satisfying inequalities (59) and 0 < ρ(mM) ≤ 1, i.e.,

$$ {\rho}^{(mM)}\in \left(0,\min \left\{\frac{-{\overline{b}}^{(mM)}+\sqrt{{\left({\overline{b}}^{(mM)}\right)}^2-4{\overline{a}}^{(mM)}{\overline{c}}^{(mM)}}}{2{\overline{a}}^{(mM)}},1\right\}\right]; $$
(62)

when k(mM) = c(x(mM))Tx(mM), ρ(mM) ∈ (0, 1]. When p(mM + i − 1) ≠ exp(ξΦ(mM + i − 1)), the parameter ζ(mM + i − 1) (m = 1, 2, ⋯ and i = 2, 3, ⋯, M) should take a value simultaneously satisfying inequalities (61) and 0 < ζ(mM + i − 1) ≤ 1, i.e.,

$$ {\zeta}^{\left( mM+i-1\right)}\in \left(0,\min \left\{\frac{-{\tilde{b}}^{\left( mM+i-1\right)}+\sqrt{{\left({\tilde{b}}^{\left( mM+i-1\right)}\right)}^2-4{\tilde{a}}^{\left( mM+i-1\right)}{\overline{c}}^{(mM)}}}{2{\tilde{a}}^{\left( mM+i-1\right)}},1\right\}\right]; $$
(63)

when p(mM + i − 1) = exp(ξΦ(mM + i − 1)), ζ(mM + i − 1) ∈ (0, 1].

1.3 Proof of Theorem 3

Proof

First, consider the following function

$$ V\left(\mathbf{x},\mathbf{d},\mathbf{k},p\right)=\sum \limits_{a\in L}{\int}_0^{x_a}{c}_a(x)\mathrm{d}x+p\sum \limits_{a\in L}{k}_a{x}_a-\sum \limits_{w\in W}{\int}_0^{d_w}{B}_w(u)\mathrm{d}u, $$
(64)

where (x, d, k, p) ∈ ΩLD × ΓC × ΓP. The function V is continuous with respect to (x, d, k, p) and ΩLD × ΓC × ΓP is compact. Therefore, according to Theorem 5.2.11 in Trench (2003), the function V has a lower bound.

For each link a ∈ L, ca is continuously differentiable, and for each OD pair w ∈ W, Bw is continuously differentiable. Thus, according to the Taylor formula, we have

$$ {\displaystyle \begin{array}{l}\sum \limits_{a\in L}{\int}_0^{x_a^{\left(i+1\right)}}{c}_a(x)\mathrm{d}x-\sum \limits_{w\in W}{\int}_0^{d_w^{\left(i+1\right)}}{B}_w(u)\mathrm{d}u=\sum \limits_{a\in L}{\int}_0^{x_a^{(i)}}{c}_a(x)\mathrm{d}x-\sum \limits_{w\in W}{\int}_0^{d_w^{(i)}}{B}_w(u)\mathrm{d}u\\ {}+\sum \limits_{a\in L}\left({x}_a^{\left(i+1\right)}-{x}_a^{(i)}\right){c}_a\left({x}_a^{(i)}\right)-\sum \limits_{w\in W}\left({d}_w^{\left(i+1\right)}-{d}_w^{(i)}\right){B}_w\left({d}_w^{(i)}\right)+o\left(\left\Vert \left({\mathbf{x}}^{\left(i+1\right)},{\mathbf{d}}^{\left(i+1\right)}\right)-\left({\mathbf{x}}^{(i)},{\mathbf{d}}^{(i)}\right)\right\Vert \right).\end{array}} $$

Furthermore,

$$ {\displaystyle \begin{array}{l}{p}^{\left(i+1\right)}\sum \limits_{a\in L}{k}_a^{\left(i+1\right)}{x}_a^{\left(i+1\right)}={p}^{(i)}\sum \limits_{a\in L}{k}_a^{(i)}{x}_a^{(i)}+{p}^{\left(i+1\right)}\sum \limits_{a\in L}\left({x}_a^{\left(i+1\right)}-{x}_a^{(i)}\right){k}_a^{\left(i+1\right)}\\ {}+\sum \limits_{a\in L}\left({k}_a^{\left(i+1\right)}-{k}_a^{(i)}\right){p}^{\left(i+1\right)}{x}_a^{(i)}+\sum \limits_{a\in L}\left({p}^{\left(i+1\right)}-{p}^{(i)}\right){k}_a^{(i)}{x}_a^{(i)}.\end{array}} $$

Thus, from the above two equations it is generated that

$$ {\displaystyle \begin{array}{l}V\left({\mathbf{x}}^{(nM)},{\mathbf{d}}^{(nM)},{\mathbf{k}}^{(nM)},{p}^{(nM)}\right)-V\left({\mathbf{x}}^{(0)},{\mathbf{d}}^{(0)},{\mathbf{k}}^{(0)},{p}^{(0)}\right)\\ {}=\sum \limits_{m=1}^n\sum \limits_{i=1}^M\Big(V\left({\mathbf{x}}^{\left(\left(m-1\right)M+i\right)},{\mathbf{d}}^{\left(\left(m-1\right)M+i\right)},{\mathbf{k}}^{\left(\left(m-1\right)M+i\right)},{p}^{\left(\left(m-1\right)M+i\right)}\right)\\ {}-V\left({\mathbf{x}}^{\left(\left(m-1\right)M+i-1\right)},{\mathbf{d}}^{\left(\left(m-1\right)M+i-1\right)},{\mathbf{k}}^{\left(\left(m-1\right)M+i-1\right)},{p}^{\left(\left(m-1\right)M+i-1\right)}\right)\Big)\\ {}=\sum \limits_{m=1}^n\sum \limits_{i=1}^M\Big({\left({\mathbf{x}}^{\left(\left(m-1\right)M+i\right)}-{\mathbf{x}}^{\left(\left(m-1\right)M+i-1\right)}\right)}^{\mathrm{T}}\left(\mathbf{c}\left({\mathbf{x}}^{\left(\left(m-1\right)M+i-1\right)}\right)+{p}^{\left(\left(m-1\right)M+i\right)}{\mathbf{k}}^{\left(\left(m-1\right)M+i\right)}\right)\\ {}-{\left({\mathbf{d}}^{\left(\left(m-1\right)M+i\right)}-{\mathbf{d}}^{\left(\left(m-1\right)M+i-1\right)}\right)}^{\mathrm{T}}\mathbf{B}\left({\mathbf{d}}^{\left(\left(m-1\right)M+i-1\right)}\right)\Big)\\ {}+\sum \limits_{m=1}^n{\left({\mathbf{k}}^{\left(\left(m-1\right)M+1\right)}-{\mathbf{k}}^{\left(\left(m-1\right)M\right)}\right)}^{\mathrm{T}}{p}^{\left(\left(m-1\right)M\right)}{\mathbf{x}}^{\left(\left(m-1\right)M\right)}\\ {}+\sum \limits_{m=1}^n\sum \limits_{i=2}^M\left({p}^{\left(\left(m-1\right)M+i\right)}-{p}^{\left(\left(m-1\right)M+i-1\right)}\right){\left({\mathbf{k}}^{\left(\left(m-1\right)M+i-1\right)}\right)}^{\mathrm{T}}{\mathbf{x}}^{\left(\left(m-1\right)M+i-1\right)}\\ {}+\sum \limits_{m=1}^n\sum \limits_{i=1}^Mo\left(\left\Vert \left({\mathbf{x}}^{\left(\left(m-1\right)M+i\right)},{\mathbf{d}}^{\left(\left(m-1\right)M+i\right)}\right)-\left({\mathbf{x}}^{\left(\left(m-1\right)M+i-1\right)},{\mathbf{d}}^{\left(\left(m-1\right)M+i-1\right)}\right)\right\Vert \right).\end{array}} $$

The term on the left hand side of the above equation has a lower bound. On the right hand side, (k(1) − k(0))Tp(0)x(0) in the second term and \( {\sum}_{i=2}^M\left({p}^{(i)}-{p}^{\left(i-1\right)}\right){\left({\mathbf{k}}^{\left(i-1\right)}\right)}^{\mathrm{T}}{\mathbf{x}}^{\left(i-1\right)} \) in the third term are fixed. Therefore, it is obtained that, as n →  + ∞, the following term

$$ {\displaystyle \begin{array}{l}\sum \limits_{m=1}^{+\infty}\sum \limits_{i=1}^M\Big({\left({\mathbf{x}}^{\left(\left(m-1\right)M+i\right)}-{\mathbf{x}}^{\left(\left(m-1\right)M+i-1\right)}\right)}^{\mathrm{T}}\left(\mathbf{c}\left({\mathbf{x}}^{\left(\left(m-1\right)M+i-1\right)}\right)+{p}^{\left(\left(m-1\right)M+i\right)}{\mathbf{k}}^{\left(\left(m-1\right)M+i\right)}\right)\\ {}-{\left({\mathbf{d}}^{\left(\left(m-1\right)M+i\right)}-{\mathbf{d}}^{\left(\left(m-1\right)M+i-1\right)}\right)}^{\mathrm{T}}\mathbf{B}\left({\mathbf{d}}^{\left(\left(m-1\right)M+i-1\right)}\right)\Big)\\ {}+\sum \limits_{m=2}^{+\infty }{\left({\mathbf{k}}^{\left(\left(m-1\right)M+1\right)}-{\mathbf{k}}^{\left(\left(m-1\right)M\right)}\right)}^{\mathrm{T}}{p}^{\left(\left(m-1\right)M\right)}{\mathbf{x}}^{\left(\left(m-1\right)M\right)}\\ {}+\sum \limits_{m=2}^{+\infty}\sum \limits_{i=2}^M\left({p}^{\left(\left(m-1\right)M+i\right)}-{p}^{\left(\left(m-1\right)M+i-1\right)}\right){\left({\mathbf{k}}^{\left(\left(m-1\right)M+i-1\right)}\right)}^{\mathrm{T}}{\mathbf{x}}^{\left(\left(m-1\right)M+i-1\right)}\\ {}+\sum \limits_{m=1}^{+\infty}\sum \limits_{i=1}^Mo\left(\left\Vert \left({\mathbf{x}}^{\left(\left(m-1\right)M+i\right)},{\mathbf{d}}^{\left(\left(m-1\right)M+i\right)}\right)-\left({\mathbf{x}}^{\left(\left(m-1\right)M+i-1\right)},{\mathbf{d}}^{\left(\left(m-1\right)M+i-1\right)}\right)\right\Vert \right)\end{array}} $$
(65)

has a lower bound.

Second, consider the following function

$$ \overline{V}\left(\mathbf{x},\mathbf{k}\right)={\mathbf{k}}^{\mathrm{T}}\left(\frac{\mathbf{k}}{2}-\nabla \mathbf{c}{\left(\mathbf{x}\right)}^{\mathrm{T}}\mathbf{x}\right), $$
(66)

where (x, k) ∈ ΩL × ΓC. The function \( \overline{V} \) is continuous with respect to (x, k) and ΩL × ΓC is compact. Thus, the function \( \overline{V} \) has a lower bound. We consider the following equation

$$ {\displaystyle \begin{array}{l}\overline{V}\left({\mathbf{x}}^{(nM)},{\mathbf{k}}^{(nM)}\right)-\overline{V}\left({\mathbf{x}}^{(0)},{\mathbf{k}}^{(0)}\right)=\sum \limits_{m=1}^n\left(\overline{V}\left({\mathbf{x}}^{(mM)},{\mathbf{k}}^{(mM)}\right)-\overline{V}\left({\mathbf{x}}^{\left(\left(m-1\right)M\right)},{\mathbf{k}}^{\left(\left(m-1\right)M\right)}\right)\right)\\ {}=\frac{1}{2}\sum \limits_{m=1}^n{\left({\mathbf{k}}^{\left(\left(m-1\right)M+1\right)}-{\mathbf{k}}^{\left(\left(m-1\right)M\right)}\right)}^{\mathrm{T}}\left({\mathbf{k}}^{\left(\left(m-1\right)M\right)}-\nabla \mathbf{c}{\left({\mathbf{x}}^{\left(\left(m-1\right)M\right)}\right)}^{\mathrm{T}}{\mathbf{x}}^{\left(\left(m-1\right)M\right)}\right)\\ {}+\frac{1}{2}\sum \limits_{m=1}^n{\left({\mathbf{k}}^{\left(\left(m-1\right)M+1\right)}-{\mathbf{k}}^{\left(\left(m-1\right)M\right)}\right)}^{\mathrm{T}}\left({\mathbf{k}}^{\left(\left(m-1\right)M+1\right)}+\nabla \mathbf{c}{\left({\mathbf{x}}^{\left(\left(m-1\right)M\right)}\right)}^{\mathrm{T}}{\mathbf{x}}^{\left(\left(m-1\right)M\right)}\right)\\ {}-{\left({\mathbf{k}}^{(nM)}\right)}^{\mathrm{T}}\nabla \mathbf{c}{\left({\mathbf{x}}^{(nM)}\right)}^{\mathrm{T}}{\mathbf{x}}^{(nM)}+{\left({\mathbf{k}}^{(0)}\right)}^{\mathrm{T}}\nabla \mathbf{c}{\left({\mathbf{x}}^{(0)}\right)}^{\mathrm{T}}{\mathbf{x}}^{(0)}.\end{array}} $$

The term on the left hand side of the above equation has a lower bound. On the right hand side, (k(1) − k(0))T(k(1) + c(x(0))Tx(0)) in the second term is fixed, the third term is bounded, and the fourth term is fixed. Therefore, it is obtained that, as n →  + ∞, the following term

$$ {\displaystyle \begin{array}{l}\sum \limits_{m=1}^{+\infty }{\left({\mathbf{k}}^{\left(\left(m-1\right)M+1\right)}-{\mathbf{k}}^{\left(\left(m-1\right)M\right)}\right)}^{\mathrm{T}}\left({\mathbf{k}}^{\left(\left(m-1\right)M\right)}-\nabla \mathbf{c}{\left({\mathbf{x}}^{\left(\left(m-1\right)M\right)}\right)}^{\mathrm{T}}{\mathbf{x}}^{\left(\left(m-1\right)M\right)}\right)\\ {}+\sum \limits_{m=2}^{+\infty }{\left({\mathbf{k}}^{\left(\left(m-1\right)M+1\right)}-{\mathbf{k}}^{\left(\left(m-1\right)M\right)}\right)}^{\mathrm{T}}\left({\mathbf{k}}^{\left(\left(m-1\right)M+1\right)}+\nabla \mathbf{c}{\left({\mathbf{x}}^{\left(\left(m-1\right)M\right)}\right)}^{\mathrm{T}}{\mathbf{x}}^{\left(\left(m-1\right)M\right)}\right)\end{array}} $$
(67)

has a lower bound.

Third, consider the following function

$$ \tilde{V}\left(p,\varPhi \right)=p\left(\frac{p}{2}-\exp \left(\xi \varPhi \right)\right), $$
(68)

where (p, Φ) ∈ ΓP × ΓE. The function \( \tilde{V} \) is continuous with respect to (p, Φ) and ΓP × ΓE is compact. Thus, the function \( \tilde{V} \) has a lower bound. We consider the following equation

$$ {\displaystyle \begin{array}{l}\tilde{V}\left({p}^{(nM)},{\varPhi}^{(nM)}\right)-\tilde{V}\left({p}^{(0)},{\varPhi}^{(0)}\right)\\ {}=\sum \limits_{m=1}^n\sum \limits_{i=1}^M\left(\tilde{V}\left({p}^{\left(\left(m-1\right)M+i\right)},{\varPhi}^{\left(\left(m-1\right)M+i\right)}\right)-\tilde{V}\left({p}^{\left(\left(m-1\right)M+i-1\right)},{\varPhi}^{\left(\left(m-1\right)M+i-1\right)}\right)\right)\\ {}=\frac{1}{2}\sum \limits_{m=1}^n\sum \limits_{i=2}^M\left({p}^{\left(\left(m-1\right)M+i\right)}-{p}^{\left(\left(m-1\right)M+i-1\right)}\right)\left({p}^{\left(\left(m-1\right)M+i-1\right)}-\exp \left(\xi {\varPhi}^{\left(\left(m-1\right)M+i-1\right)}\right)\right)\\ {}+\frac{1}{2}\sum \limits_{m=1}^n\sum \limits_{i=2}^M\left({p}^{\left(\left(m-1\right)M+i\right)}-{p}^{\left(\left(m-1\right)M+i-1\right)}\right)\left({p}^{\left(\left(m-1\right)M+i\right)}+\exp \left(\xi {\varPhi}^{\left(\left(m-1\right)M+i-1\right)}\right)\right)\\ {}-{p}^{(nM)}\exp \left(\xi {\varPhi}^{(nM)}\right)+{p}^{(0)}\exp \left(\xi {\varPhi}^{(0)}\right).\end{array}} $$

The term on the left hand side of the above equation has a lower bound. On the right hand side, \( {\sum}_{i=2}^M\left({p}^{(i)}-{p}^{\left(i-1\right)}\right)\left({p}^{(i)}+\exp \left(\xi {\varPhi}^{\left(i-1\right)}\right)\right) \) in the second term is fixed, the third term is bounded, and the fourth term is fixed. Therefore, it is obtained that, as n →  + ∞, the following term

$$ {\displaystyle \begin{array}{l}\sum \limits_{m=1}^{+\infty}\sum \limits_{i=2}^M\left({p}^{\left(\left(m-1\right)M+i\right)}-{p}^{\left(\left(m-1\right)M+i-1\right)}\right)\left({p}^{\left(\left(m-1\right)M+i-1\right)}-\exp \left(\xi {\varPhi}^{\left(\left(m-1\right)M+i-1\right)}\right)\right)\\ {}+\sum \limits_{m=2}^{+\infty}\sum \limits_{i=2}^M\left({p}^{\left(\left(m-1\right)M+i\right)}-{p}^{\left(\left(m-1\right)M+i-1\right)}\right)\left({p}^{\left(\left(m-1\right)M+i\right)}+\exp \left(\xi {\varPhi}^{\left(\left(m-1\right)M+i-1\right)}\right)\right)\end{array}} $$
(69)

has a lower bound.

Fourth, by Assumption 2, combining terms (65), (67), and (69) leads to

$$ {\displaystyle \begin{array}{l}\sum \limits_{m=1}^{+\infty }{\left({\mathbf{k}}^{\left( mM+1\right)}-{\mathbf{k}}^{(mM)}\right)}^{\mathrm{T}}\left({\mathbf{k}}^{\left( mM+1\right)}+{p}^{(mM)}{\mathbf{x}}^{(mM)}+\nabla \mathbf{c}{\left({\mathbf{x}}^{(mM)}\right)}^{\mathrm{T}}{\mathbf{x}}^{(mM)}\right)\\ {}+\sum \limits_{m=1}^{+\infty}\sum \limits_{i=2}^M\left({p}^{\left( mM+i\right)}-{p}^{\left( mM+i-1\right)}\right)\left({p}^{\left( mM+i\right)}+{\left({\mathbf{k}}^{\left( mM+i-1\right)}\right)}^{\mathrm{T}}{\mathbf{x}}^{\left( mM+i-1\right)}+\exp \left(\xi {\varPhi}^{\left( mM+i-1\right)}\right)\right)\\ {}+\sum \limits_{m=1}^{+\infty }Z\left({\mathbf{x}}^{\left(\left(m-1\right)M\right)},{\mathbf{d}}^{\left(\left(m-1\right)M\right)},{\mathbf{k}}^{\left(\left(m-1\right)M\right)},{p}^{\left(\left(m-1\right)M\right)}\right)\\ {}+\sum \limits_{m=1}^{+\infty}\sum \limits_{i=1}^Mo\left(\left\Vert \left({\mathbf{x}}^{\left(\left(m-1\right)M+i\right)},{\mathbf{d}}^{\left(\left(m-1\right)M+i\right)}\right)-\left({\mathbf{x}}^{\left(\left(m-1\right)M+i-1\right)},{\mathbf{d}}^{\left(\left(m-1\right)M+i-1\right)}\right)\right\Vert \right)\\ {}\le \left(1-\beta \right)\sum \limits_{m=1}^{+\infty }Z\left({\mathbf{x}}^{\left(\left(m-1\right)M\right)},{\mathbf{d}}^{\left(\left(m-1\right)M\right)},{\mathbf{k}}^{\left(\left(m-1\right)M\right)},{p}^{\left(\left(m-1\right)M\right)}\right)\\ {}+\sum \limits_{m=1}^{+\infty}\sum \limits_{i=1}^Mo\left(\left\Vert \left({\mathbf{x}}^{\left(\left(m-1\right)M+i\right)},{\mathbf{d}}^{\left(\left(m-1\right)M+i\right)}\right)-\left({\mathbf{x}}^{\left(\left(m-1\right)M+i-1\right)},{\mathbf{d}}^{\left(\left(m-1\right)M+i-1\right)}\right)\right\Vert \right)\end{array}} $$

It can be seen from previous explanations of Assumption 2 that Z is continuous with respect to \( \left(\mathbf{x},\mathbf{d},\mathbf{k},p\right)\in {\overline{E}}_{\alpha } \) and Z(x, d, k, p) < 0 holds for all \( \left(\mathbf{x},\mathbf{d},\mathbf{k},p\right)\in {\overline{E}}_{\alpha } \). Moreover, the set \( {\overline{E}}_{\alpha } \) is compact. Therefore, according to Theorem 5.2.12 in Trench (2003), there exists a constant h > 0 such that Z(x, d, k, p) <  − h for all \( \left(\mathbf{x},\mathbf{d},\mathbf{k},p\right)\in {\overline{E}}_{\alpha } \).

In addition, it holds that

$$ o\left(\left\Vert \left({\mathbf{x}}^{\left(i+1\right)},{\mathbf{d}}^{\left(i+1\right)}\right)-\left({\mathbf{x}}^{(i)},{\mathbf{d}}^{(i)}\right)\right\Vert \right)/\left\Vert \left({\mathbf{x}}^{\left(i+1\right)},{\mathbf{d}}^{\left(i+1\right)}\right)-\left({\mathbf{x}}^{(i)},{\mathbf{d}}^{(i)}\right)\right\Vert \to 0, $$

as ‖(x(i + 1), d(i + 1)) − (x(i), d(i))‖ → 0 for any i = 0, 1, 2, ⋯. Thus, under the precondition that the set ΩLD is compact, there exists a constant \( \overline{h}>0 \) such that

$$ o\left(\left\Vert \left({\mathbf{x}}^{\left(i+1\right)},{\mathbf{d}}^{\left(i+1\right)}\right)-\left({\mathbf{x}}^{(i)},{\mathbf{d}}^{(i)}\right)\right\Vert \right)<\left(1-\beta \right)h/(2M) $$

if \( \left\Vert \left({\mathbf{x}}^{\left(i+1\right)},{\mathbf{d}}^{\left(i+1\right)}\right)-\left({\mathbf{x}}^{(i)},{\mathbf{d}}^{(i)}\right)\right\Vert \le \overline{h} \) for any i = 0, 1, 2, ⋯. Further, from Assumption 1, it is obtained that

$$ o\left(\left\Vert \left({\mathbf{x}}^{\left(i+1\right)},{\mathbf{d}}^{\left(i+1\right)}\right)-\left({\mathbf{x}}^{(i)},{\mathbf{d}}^{(i)}\right)\right\Vert \right)<\left(1-\beta \right)h/(2M), $$

for any i = 0, 1, 2, ⋯.

Thus, if the trajectory of the dynamical system model always belongs to the set \( {\overline{E}}_{\alpha } \), then

$$ {\displaystyle \begin{array}{l}\left(1-\beta \right)Z\left({\mathbf{x}}^{\left(\left(m-1\right)M\right)},{\mathbf{d}}^{\left(\left(m-1\right)M\right)},{\mathbf{k}}^{\left(\left(m-1\right)M\right)},{p}^{\left(\left(m-1\right)M\right)}\right)\\ {}+\sum \limits_{i=1}^Mo\left(\left\Vert \left({\mathbf{x}}^{\left(\left(m-1\right)M+i\right)},{\mathbf{d}}^{\left(\left(m-1\right)M+i\right)}\right)-\left({\mathbf{x}}^{\left(\left(m-1\right)M+i-1\right)},{\mathbf{d}}^{\left(\left(m-1\right)M+i-1\right)}\right)\right\Vert \right)<-\left(1-\beta \right)h/2,\end{array}} $$
(70)

for m = 0, 1, 2, ⋯. Furthermore,

$$ {\displaystyle \begin{array}{l}\left(1-\beta \right)\sum \limits_{m=1}^{+\infty }Z\left({\mathbf{x}}^{\left(\left(m-1\right)M\right)},{\mathbf{d}}^{\left(\left(m-1\right)M\right)},{\mathbf{k}}^{\left(\left(m-1\right)M\right)},{p}^{\left(\left(m-1\right)M\right)}\right)\\ {}+\sum \limits_{m=1}^{+\infty}\sum \limits_{i=1}^Mo\left(\left\Vert \left({\mathbf{x}}^{\left(\left(m-1\right)M+i\right)},{\mathbf{d}}^{\left(\left(m-1\right)M+i\right)}\right)-\left({\mathbf{x}}^{\left(\left(m-1\right)M+i-1\right)},{\mathbf{d}}^{\left(\left(m-1\right)M+i-1\right)}\right)\right\Vert \right)<-\infty .\end{array}} $$
(71)

This contradicts the fact that all terms (65), (67), and (69) have a lower bound. Therefore, the sequence (x(n), d(n), k(n), p(n)) (n = 0, 1, 2, ⋯) must leave \( {\overline{E}}_{\alpha } \) and enter Eα for some n0. Once the trajectory enters the set Eα, it is impossible that the trajectory leaves and enters Eα endlessly or leaves Eα forever. Otherwise, eq. (71) still holds because the term on the left hand side of eq. (70) is non-positive under Assumption 1 (no matter whether the trajectory is in the set \( {\overline{E}}_{\alpha } \) or in Eα). Thus, the trajectory will enter and stay in the set Eα after some n1 (≥n0).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, RY., Huang, HJ. & Yang, H. Tradable Credit Scheme for Control of Evolutionary Traffic Flows to System Optimum: Model and its Convergence. Netw Spat Econ 19, 833–868 (2019). https://doi.org/10.1007/s11067-018-9432-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11067-018-9432-z

Keywords

Navigation