Skip to main content

Advertisement

Log in

Decongestion of Urban Areas with Hotspot Pricing

  • Published:
Networks and Spatial Economics Aims and scope Submit manuscript

Abstract

The rapid growth of population in urban areas is jeopardizing the mobility and air quality worldwide. One of the most notable problems arising is that of traffic congestion which in turn affects air pollution. With the advent of technologies able to sense real-time data about cities, and its public distribution for analysis, we are in place to forecast scenarios valuable to ameliorate and control congestion. Here, we analyze a local congestion pricing scheme, hotspot pricing, that surcharges vehicles traversing congested junctions. The proposed tax is computed from the estimation of the evolution of congestion at local level, and the expected response of users to the tax (elasticity). Results on cities’ road networks, considering real-traffic data, show that the proposed hotspot pricing scheme would be more effective than current mechanisms to decongest urban areas, and paves the way towards sustainable congestion in urban areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Alternatively, a more realistic approach would be to attach queues to links instead of junctions, and modify the equations accordingly. Here, we just rely in MCM as described in (Solé-Ribalta et al. 2016).

  2. http://datos.madrid.es/portal/site/egob/

  3. http://www.mambiente.munimadrid.es/opencms/opencms/calaire

  4. http://www.mambiente.munimadrid.es/opencms/opencms/calaire/ContaAtmosferica/portadilla.html

References

  • Arnott R, Small K (1994) The economics of traffic congestion. Am Sci 82 (5):446–455

    Google Scholar 

  • Arnott R, De Palma A, Lindsey R (1993) A structural model of peak-period congestion: a traffic bottleneck with elastic demand. Am Econ Rev 161–179

  • Barthélemy M (2011) Spatial networks. Phys Rep 499(1):1–101

    Article  Google Scholar 

  • Barthélemy M, Flammini A (2006) Optimal traffic networks. J Stat Mech: Theory Exp 2006(07):L07,002

    Article  Google Scholar 

  • Bast H, Funke S, Sanders P, Schultes D (2007) Fast routing in road networks with transit nodes. Science 316(5824):566–566

    Article  Google Scholar 

  • Behrisch M, Bieker L, Erdmann J, Krajzewicz D (2011) Sumo–simulation of urban mobility: an overview. In: Proceedings of SIMUL 2011, the third international conference on advances in system simulation. Thinkmind

  • Beser Hugosson M, Eliasson J (2006) The stockholm congestion charging system: an overview of the effects after six months. In: European transport conference 2006, ETC 2006. Strasbourg, France

  • Boarnet M, Spears S, Handy S, Rodier C (2014) Impacts of road user pricing on passenger vehicle use and greenhouse gas emissions. http://www.arb.ca.gov/cc/sb375/policies/pricing/road_pricing_brief.eps. Accessed: 2015-08-07

  • Cetin N, Burri A, Nagel K (2003) A large-scale agent-based traffic microsimulation based on queue model. In: Proceedings of swiss transport research conference (STRC). Monte Verita, CH. Citeseer

  • Dahl CA (2012) Measuring global gasoline and diesel price and income elasticities. Energy Policy 41:2–13

    Article  Google Scholar 

  • Danila B, Yu Y, Marsh JA, Bassler KE (2006) Optimal transport on complex networks. Phys Rev E 74:046,106. doi:10.1103/PhysRevE.74.046106

    Article  Google Scholar 

  • de Dios Ortuzar J, Willumsen LG et al (1994) Modelling transport. Wiley, New Jersey

    Google Scholar 

  • de Palma A, Lindsey R (2011) Traffic congestion pricing methodologies and technologies. Transp Res C Emerg Technol 19(6):1377–1399

    Article  Google Scholar 

  • De Palma A, Lindsey R (2004) Congestion pricing with heterogeneous travelers: a general-equilibrium welfare analysis. Networks and Spatial Economics 4(2):135–160

    Article  Google Scholar 

  • Donetti L, Hurtado PI, Muñoz MA (2005) Entangled networks, synchronization, and optimal network topology. Phys Rev Lett 95:188,701. doi:10.1103/PhysRevLett.95.188701

    Article  Google Scholar 

  • Dorogovtsev SN, Goltsev AV, Mendes JF (2008) Critical phenomena in complex networks. Rev Mod Phys 80(4):1275

    Article  Google Scholar 

  • Echenique P, Gómez-Gardeñes J, Moreno Y (2005) Dynamics of jamming transitions in complex networks. EPL (Europhysics Letters) 71(2):325

    Article  Google Scholar 

  • Frank RH (2007) Microeconomics and behavior. McGraw-Hill

  • Friesz TL, Bernstein D, Kydes N (2004) Dynamic congestion pricing in disequilibrium. Networks and Spatial Economics 4(2):181–202

    Article  Google Scholar 

  • Gawron C (1998) An iterative algorithm to determine the dynamic user equilibrium in a traffic simulation model. Int J Mod Phys C 9(03):393–407

    Article  Google Scholar 

  • Grether D, Neumann A, Nagel K (2012) Simulation of urban traffic control: a queue model approach. Procedia Comput Sci 10:808–814

    Article  Google Scholar 

  • Grote M, Williams I, Preston J, Kemp S (2016) Including congestion effects in urban road traffic co 2 emissions modelling: do local government authorities have the right options? Transp Res Part D: Transp Environ 43:95–106

    Article  Google Scholar 

  • Guimera R, Arenas A, Díaz-guilera A, Giralt F (2002) Dynamical properties of model communication networks. Phys Rev E 66(2):026,704

    Article  Google Scholar 

  • Kickhöfer B, Nagel K (2016) Towards high-resolution first-best air pollution tolls. Networks and Spatial Economics 16(1):175–198

    Article  Google Scholar 

  • Kim K, Kahng B, Kim D (2009) Jamming transition in traffic flow under the priority queuing protocol. EPL (Europhysics Letters) 86(5):58,002

    Article  Google Scholar 

  • Labandeira X, Labeaga JM, López-Otero X. (2012) Estimation of elasticity price of electricity with incomplete information. Energy Econ 34(3):627–633

    Article  Google Scholar 

  • Li G, Reis SDS, Moreira AA, Havlin S, Stanley HE, Andrade JS (2010) Towards design principles for optimal transport networks. Phys Rev Lett 104:018,701. doi:10.1103/PhysRevLett.104.018701

    Article  Google Scholar 

  • Litman T (2012) Understanding transport demands and elasticities how prices and other factors affect travel behavior

  • Misra A, Roorda MJ, MacLean HL (2013) An integrated modelling approach to estimate urban traffic emissions. Atmos Environ 73:81–91

    Article  Google Scholar 

  • Moroni S, Ruprecht A, Tosti G, Villavecchia B, Mocnik G, Sioutas C, Westerdahl D, Invernizzi G (2013) Airborne black carbon and traffic patterns during the first year of ’area c’ lez in milan. In: 17Th ETH-conference on combustion generated nanoparticles

  • Nagel K, Grether D, Beuck U, Chen Y, Rieser M, Axhausen KW (2008) Multi-agent transport simulations and economic evaluation. Jahrbü,cher für Nationalökonomie und Statistik 228(2-3):173– 194

    Google Scholar 

  • Newman M (2010) Networks: an introduction. OUP, Oxford

    Book  Google Scholar 

  • Olszewski P, Xie L (2005) Modelling the effects of road pricing on traffic in Singapore. Transp Res A Policy Pract 39(7):755–772

    Article  Google Scholar 

  • Panis LI, Broekx S, Liu R (2006) Modelling instantaneous traffic emission and the influence of traffic speed limits. Sci Total Environ 371(1):270–285

    Article  Google Scholar 

  • Parrish DD, Zhu T (2009) Clean air for megacities. Science 326(5953):674–675

    Article  Google Scholar 

  • Paulley N, Balcombe R, Mackett R, Titheridge H, Preston J, Wardman M, Shires J, White P (2006) The demand for public transport: the effects of fares, quality of service, income and car ownership. Transp Policy 13(4):295–306

    Article  Google Scholar 

  • Pels E, Verhoef ET (2004) The economics of airport congestion pricing. J Urban Econ 55(2):257–277

    Article  Google Scholar 

  • Petersson G (1987) Traffic and children’s health, chap. Exposure to traffic exhaust, pp 117–126. NHV-Report 1987:2

    Google Scholar 

  • Qian ZS, Zhang HM (2013) A hybrid route choice model for dynamic traffic assignment. Networks and Spatial Economics 13(2):183–203

    Article  Google Scholar 

  • Raducan G, Stefan S (2009) Characterization of traffic-generated pollutants in bucharest. Atmósfera 22(1):99–110

    Google Scholar 

  • Ramasco JJ, Marta S, López E, Boettcher S (2010) Optimization of transport protocols with path-length constraints in complex networks. Phys Rev 82 (3):036,119

    Google Scholar 

  • Raney B, Cetin N, Völlmy A, Vrtic M, Axhausen K, Nagel K (2003) An agent-based microsimulation model of swiss travel: first results. Networks and Spatial Economics 3(1):23–41

    Article  Google Scholar 

  • Ren Y, Ercsey-Ravasz M, Wang P, González M C, Toroczkai Z (2014) Predicting commuter flows in spatial networks using a radiation model based on temporal ranges. Nat Commun 5:5347

    Article  Google Scholar 

  • Samuelson P, Nordhaus W, Mandel M (1995) Economics. McGraw-Hill

  • Scellato S, Fortuna L, Frasca M, Gómez-Gardeñes J, Latora V (2010) Traffic optimization in transport networks based on local routing. Eur Phys J B 73 (2):303–308

    Article  Google Scholar 

  • Simini F, González M C, Maritan A, Barabási A L (2012) A universal model for mobility and migration patterns. Nature 484(7392):96–100

    Article  Google Scholar 

  • Singh BK, Gupte N (2005) Congestion and decongestion in a communication network. Phys Rev E 71(5):055,103

    Article  Google Scholar 

  • Solé-Ribalta A, Gómez S, Arenas A (2016) A model to identify urban traffic congestion hotspots in complex networks. Roy Soc Open Sci 3(10)

  • Sommer C, German R, Dressler F (2011) Bidirectionally coupled network and road traffic simulation for improved ivc analysis. IEEE Trans Mob Comput 10 (1):3–15

    Article  Google Scholar 

  • Swan PF, Belzer MH (2010) Empirical evidence of toll road traffic diversion and implications for highway infrastructure privatization. Public Works Manag Policy 14(4):351–373

    Article  Google Scholar 

  • Szeto W, Jiang Y, Wang D, Sumalee A (2015) A sustainable road network design problem with land use transportation interaction over time. Networks and Spatial Economics 15(3):791–822

    Article  Google Scholar 

  • Tadić B, Thurner S, Rodgers G (2004) Traffic on complex networks: towards understanding global statistical properties from microscopic density fluctuations. Phys Rev E 69(3):036,102

    Article  Google Scholar 

  • Valancius V, Lumezanu C, Feamster N, Johari R, Vazirani VV (2011) How many tiers?: pricing in the internet transit market. In: ACM SIGCOMM Computer communication review, vol 41. ACM, pp 194–205

  • Vickrey WS (1963) Pricing in urban and suburban transport. Am Econ Rev 53(2):452–465

    Google Scholar 

  • Yan H, Lam WH (1996) Optimal road tolls under conditions of queueing and congestion. Transp Res A Policy Pract 30(5):319–332

    Article  Google Scholar 

  • Yang H, Bell H, MG (1998) Models and algorithms for road network design: a review and some new developments. Transp Rev 18(3):257–278. doi:10.1080/01441649808717016

    Article  Google Scholar 

  • Zhao L, Lai YC, Park K, Ye N (2005) Onset of traffic congestion in complex networks. Phys Rev E 71:026,125. doi:10.1103/PhysRevE.71.026125

    Article  Google Scholar 

  • Zipf GK (1946) The p 1 p 2/d hypothesis: on the intercity movement of persons. Am Sociol Rev 11(6):677–686

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by Ministerio de Economía y Competitividad (Grant FIS2015-71582-C2-1) and European Comission FET-Proactive Projects MULTIPLEX (Grant 317532). A.A. also acknowledges partial financial support from the ICREA Academia and the James S. McDonnell Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Arenas.

Appendix: Optimal Traffic Redistribution Given Fixed Revenue

Appendix: Optimal Traffic Redistribution Given Fixed Revenue

We want to compute the maximum fraction of vehicles, 1 − ϕ i , that will avoid the junctions with the hotspot pricing by fixing the overall tax income for the city \(\mathcal {P}\). This may happen when local authorities want to fix the economic effort of the drivers to improve the traffic conditions. This is equivalent to the following minimization problem:

$$ \min_{\{\phi_{i}\}}\left( \sum\limits_{i} \phi_{i} \sigma_{i} \right)\ \ \text{s.t.}\ \ \ \sum\limits_{i} \phi_{i} \sigma_{i} c_{i} =\frac{c_{0}}{\phi_{0}^{1/\mu}} \sum\limits_{i} \phi_{i}^{(\mu + 1)/\mu} \sigma_{i} = \mathcal{P}\,, $$
(5)

where σ i is the amount of cars junction i receives before the taxing, c 0 is the initial price to obtain a reduction of ϕ 0, μ is the elasticity and c i is defined in Eq. 4. The linear problem stand for the remaining cars that will cross the congested junctions after the taxing is applied and the restriction stands for the overall income produced by those cars.

We solve the minimisation problem using Lagrange multipliers. The objective function is

$$ L(\phi_{i},\lambda) = \sum\limits_{i} \phi_{i} \sigma_{i} - \lambda \left( \sum\limits_{i} {\phi_{i}}^{k_{2}}{\sigma_{i}} - k_{1} \right)\,, $$
(6)

where \(k_{1} = \frac {\mathcal {P} \phi _{0}^{1/\mu }}{c_{0}}\) and \(k_{2} = \frac {\mu +1}{\mu }\). Setting the gradient ∇L({ϕ i },λ) = 0 we have:

$$\begin{array}{@{}rcl@{}} \frac{\partial L}{\partial \phi_{j}} &=& \sigma_{j} - \lambda k_{2} {\phi_{j}}^{k_{2}-1}\sigma_{j} = 0 \qquad\Longrightarrow \phi_{j} = \left( \frac{1}{\lambda k_{2}}\right)^{\frac{1}{k_{2}-1}} \end{array} $$
(7)
$$\begin{array}{@{}rcl@{}} \frac{\partial L}{\partial \lambda} &=& \sum\limits_{i} {\phi_{i}}^{k_{2}}\sigma_{i} - k_{1} = 0 ~\qquad\quad\Longrightarrow \sum\limits_{i} {\phi_{i}}^{k_{2}} \sigma_{i} = k_{1} \,. \end{array} $$
(8)

From Eq. 7 we see that all the ϕ j are equal, i.e. independent of the node. Substituting Eqs. 7 into 8 we can obtain λ. Specifically,

$$\begin{array}{@{}rcl@{}} \left( \frac{1}{k_{2}\lambda}\right)^{\frac{k_{2}}{k_{2}-1}} \sum\limits_{i} {\sigma_{i}} = k_{1}\ \Longrightarrow \ \lambda = {k_{2}}^{-1} \left( {\frac{k_{1}}{\sum\limits_{i} \sigma_{i}}}\right)^{\frac{1-k_{2}}{k_{2}}}\,, \end{array} $$
(9)

which yields an homogeneous fraction

$$\begin{array}{@{}rcl@{}} \phi= \left( \frac{\mathcal{P} {\phi_{0}}^{1/\mu}}{c_{0} \sum\limits_{i} \sigma_{i}}\right)^{\frac{\mu}{\mu+1}}\,. \end{array} $$
(10)

The local reduction to be applied is given by Eq. 10, and the tax to apply to every congested junction is

$$\begin{array}{@{}rcl@{}} c = \left( {\frac{c_{0}^{\mu}\mathcal{P}}{\phi_{0}{\sum}_{i} \sigma_{i}}}\right)^{1/(\mu+1)}\,. \end{array} $$
(11)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solé-Ribalta, A., Gómez, S. & Arenas, A. Decongestion of Urban Areas with Hotspot Pricing. Netw Spat Econ 18, 33–50 (2018). https://doi.org/10.1007/s11067-017-9349-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11067-017-9349-y

Keywords

Navigation