Skip to main content

Advertisement

Log in

Translational Rodent Models of Korsakoff Syndrome Reveal the Critical Neuroanatomical Substrates of Memory Dysfunction and Recovery

  • Review
  • Published:
Neuropsychology Review Aims and scope Submit manuscript

Abstract

Investigation of the amnesic disorder Korsakoff Syndrome (KS) has been vital in elucidating the critical brain regions involved in learning and memory. Although the thalamus and mammillary bodies are the primary sites of neuropathology in KS, functional deactivation of the hippocampus and certain cortical regions also contributes to the chronic cognitive dysfunction reported in KS. The rodent pyrithiamine-induced thiamine deficiency (PTD) model has been used to study the extent of hippocampal and cortical neuroadaptations in KS. In the PTD model, the hippocampus, frontal and retrosplenial cortical regions display loss of cholinergic innervation, decreases in behaviorally stimulated acetylcholine release and reductions in neurotrophins. While PTD treatment results in significant impairment in measures of spatial learning and memory, other cognitive processes are left intact and may be recruited to improve cognitive outcome. In addition, behavioral recovery can be stimulated in the PTD model by increasing acetylcholine levels in the medial septum, hippocampus and frontal cortex, but not in the retrosplenial cortex. These data indicate that although the hippocampus and frontal cortex are involved in the pathogenesis of KS, these regions retain neuroplasticity and may be critical targets for improving cognitive outcome in KS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ACh:

Acetylcholine

AChE:

Acetylcholinesterase

AChE-I:

Acetylcholinesterase inhibitor

AT:

Anterior thalamus

ATN:

Anterior thalamic nuclei

BDNF:

Brain-derived neurotrophic factor

ChAT:

Choline acetyltransferase

DNMTS:

Delayed non-matching-to-sample

DMTS:

Delayed matching-to-sample

EAS:

Early acute stage

IML:

Intralaminar

KS:

Korsakoff syndrome

LAS:

Late acute stage

MAS:

Middle acute stage

MB:

Mammillary bodies

MTP:

Matching-To-Position

MTS:

Matching-To-Sample

NeuN:

Neuronal-Specific nuclear protein

NMTP:

Non-Matching-To-Position

NMTS:

Non-Matching-To-Sample

PTD:

Pyrithiamine-induced thiamine deficiency

TD:

Thiamine deficiency

TPP:

Thiamine pyrophosphate

WE:

Wernicke’s encephalopathy

WKS:

Wernicke-Korsakoff syndrome

References

  • Aggleton, J. P. (2008). Understanding anterograde amnesia: disconnections and hidden lesions. The Quarterly Journal of Experimental Psychology, 61, 1441–1471.

    Article  PubMed  Google Scholar 

  • Aggleton, J. P., & Brown, M. W. (1999). Episodic memory, amnesia, and the hippocampal-anterior thalamic axis. Behavioral Brain Research, 22, 425–489.

    CAS  Google Scholar 

  • Aggleton, J. P., Dumont, J. R., & Warburton, E. C. (2011). Unraveling the contributions of the diencephalon to recognition memory: a review. Learning & Memory, 18, 384–400.

    Article  Google Scholar 

  • Anzalone, S., Vetreno, R. P., Ramos, R. L., & Savage, L. M. (2010). Cortical cholinergic abnormalities contribute to the amnesic state induced by pyrithiamine-induced thiamine deficiency in the rat. European Journal of Neuroscience, 32, 847–858.

    Article  PubMed  Google Scholar 

  • Arendt, T., Bigl, V., Arendt, A., & Tennstedt, A. (1983). Loss of neurons in the nucleus basalis of Meynert in Alzheimer’s disease, paralysis agitans and Korskaoff’s disease. Acta Neuropathologica, 61, 101–108.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong-James, M., Ross, D. T., Chen, F., & Ebner, F. F. (1988). The effect of thiamine deficiency on the structure and physiology of the rat forebrain. Metabolic Brain Disease, 3, 91–124.

    Article  PubMed  CAS  Google Scholar 

  • Baker, K. G., Harding, A. J., Halliday, G. M., Kril, J. J., & Harper, C. G. (1999). Neuronal loss in functional zones of the cerebellum of chronic alcoholics with and without Wernicke’s encephalopathy. Neuroscience, 91, 429–438.

    Article  PubMed  CAS  Google Scholar 

  • Béracochéa, D. (2005). Interaction between emotion and memory: importance of mammillary body damage in a mouse model of the alcoholic Korsakoff syndrome. Neural Plasticity, 12, 275–287.

    Article  PubMed  Google Scholar 

  • Burk, J. A., & Mair, R. G. (2001). Effects of intralaminar thalamic lesions on sensory attention and motor intention in the rat: a comparison with lesions involving frontal cortex and hippocampus. Behavioural Brain Research, 123, 49–63.

    Article  PubMed  CAS  Google Scholar 

  • Butterworth, R. F., & Héroux, M. (1989). Effect of pyrithiamine treatment and subsequent thiamine rehabilitation on regional cerebral amino acids and thiamine-dependent enzymes. Journal of Neurochemistry, 52, 1079–1084.

    Article  PubMed  CAS  Google Scholar 

  • Carvalho, F. M., Pereira, S. R. C., Pires, R. G. W., Ferraz, V. P., Romano-Silva, M. A., Oliveira-Silva, I. F., & Ribeiro, A. M. (2006). Thiamine deficiency decreases glutamate uptake in the prefrontal cortex and impairs performance in a water maze test. Pharmacology Biochemistry and Behavior, 83, 481–489.

    Article  CAS  Google Scholar 

  • Christie, J. E., Kean, D. M., Douglas, R. H., Engleman, H. M., St Clair, D., & Blackburn, I. M. (1988). Magnetic resonance imaging in pre-senile dementia of the Alzheimer-type, multi-infarct dementia and Korsakoff’s syndrome. Psychological Medicine, 18, 319–329.

    Article  PubMed  CAS  Google Scholar 

  • Ciccia, R. M., & Langlais, P. J. (2000). An examination of the synergistic interaction of ethanol and thiamine deficiency in the development of neurological signs and long-term cognitive and memory impairments. Alcoholism, Clinical and Experimental Research, 24, 622–634.

    Article  PubMed  CAS  Google Scholar 

  • Cochrane, M., Cochrane, A., Jauhar, P., & Ashton, E. (2005). Acetylcholinesterase inhibitors for the treatment of Wernicke-Korsakoff syndrome— three further cases show response to donepezil. Alcohol and Alcoholism, 40, 151–154.

    Article  PubMed  CAS  Google Scholar 

  • Cotman, C. W., & Berchtold, N. C. (2002). Exercise: a behavioral intervention to enhance brain health and plasticity. Trends in Neuroscience, 25, 295–301.

    Article  CAS  Google Scholar 

  • Crews, F. T., Nixon, K., & Wilkie, M. E. (2004). Exercise reverses ethanol inhibition of neural stem cell proliferation. Alcohol, 33, 63–71.

    PubMed  CAS  Google Scholar 

  • Dirksen, C. L., Howard, J. A., Cronin-Golomb, A., & Oscar-Berman, M. (2006). Patterns of prefrontal dysfunction in alcoholics with and without Korsakoff’s syndrome, patients with Parkinson’s disease, and patients with rupture and repair of the anterior communicating artery. Neuropsychiatric Disease and Treatment, 2, 327–339.

    Article  PubMed  Google Scholar 

  • Fabel, K., Wolf, S. A., Ehninger, D., Babu, H., Leal-Galicia, P., & Kemperman, G. (2009). Additive effects of physical exercise and environmental enrichment on adult hippocampal neurogenesis in mice. Frontiers in Neuroscience, 3, 1–7.

    Google Scholar 

  • Fama, R., Marsh, L., & Sullivan, E. V. (2004). Dissociation of remote and anterograde memory impairment and neural correlates in alcoholic Korsakoff syndrome. Journal of International Neuropsychological Society, 10, 427–441.

    Article  Google Scholar 

  • Gansler, D. A., Harris, G. J., Oscar-Berman, M., Streeter, C., Lewis, R. F., Ahmed, I., & Achong, D. (2000). Hypoperfusion of inferior frontal brain regions in abstinent alcoholics: a pilot SPECT study. Journal of Studies on Alcohol, 61, 32–37.

    PubMed  CAS  Google Scholar 

  • Gibson, G. E., Ksiezak-Reding, H., Sheu, K. F. R., Mykytyn, V., & Blass, J. P. (1984). Correlation of enzymatic metabolic and behavioral deficits in thiamine deficiency and its reversal. Neurochemistry Research, 9, 803–814.

    Article  CAS  Google Scholar 

  • Gibson, G. E., Park, L. C. H., Sheu, K. F. R., Blass, J. P., & Calingasan, N. Y. (1999). The α-ketoglutarate dehydrogenase complex in neurodegeneration. Neurochemistry International, 36, 97–112.

    Article  Google Scholar 

  • Griesbach, G. S., Hovda, D. A., Molteni, R., Wu, A., & Gomez-Pinilla, F. (2004). Voluntary exercise following traumatic brain injury: brain-derived neurotrophic factor upregulation and recovery of function. Neuroscience, 125, 129–139.

    Article  PubMed  CAS  Google Scholar 

  • Griesbach, G. S., Hovda, D. A., & Gomez-Pinilla, F. (2009). Exercise-induced improvement in cognitive performance after traumatic brain injury in rats is dependent on BDNF activation. Brain Research, 1228, 105–115.

    Article  CAS  Google Scholar 

  • Harding, A. J., Halliday, G., Caine, D., & Kril, J. J. (2000). Degeneration of anterior thalamic nuclei differentiates alcoholics with amnesia. Brain, 123, 141–154.

    Article  PubMed  Google Scholar 

  • Harper, C. G., & Kril, J. J. (1993). Neuropathological changes in alcoholics. Research Monograph: Alcohol-induced Brain Damage, 22, 39–70.

    Google Scholar 

  • Hazell, A. S., & Butterworth, R. F. (2009). Update of cell damage mechanisms in thiamine deficiency: focus on oxidative stress, excitotoxicity and inflammation. Alcohol and Alcoholism, 44, 141–147.

    Article  PubMed  CAS  Google Scholar 

  • Hazell, A. S., Butterworth, R. F., & Hakim, A. M. (1993). Cerebral vulnerability is associated with selective increase in extracellular glutamate concentration in experimental thiamine deficiency. Journal of Neurochemistry, 61, 1155–1158.

    Article  PubMed  CAS  Google Scholar 

  • He, X., Sullivan, E. V., Stankovic, R. K., Harper, C. G., & Pfefferbaum, A. (2007). Interaction of thiamine deficiency and voluntary alcohol consumption disrupts rat corpus callosum ultrastructure. Neuropsychopharmacology, 32, 2207–2216.

    Article  PubMed  CAS  Google Scholar 

  • Héroux, M., & Butterworth, R. F. (1988). Reversible alterations of cerebral α–aminobutyric acid in pyrithiamine-treated rats: implications for the pathogenesis Wernicke’s encephalopathy. Journal of Neurochemistry, 51, 1221–1226.

    Article  PubMed  Google Scholar 

  • Héroux, M., & Butterworth, R. F. (1995). Regional alterations of thiamine phosphate esters and of thiamine diphosphate-dependent enzymes in relation to function in experimental Wernicke's encephalopathy. Neurochemical Research, 20, 87–93.

    Google Scholar 

  • Heyn, P., Abreau, B. C., & Ottenbacher, K. J. (2004). The effects of exercise training on elderly persons with cognitive impairment and dementia: a meta-analysis. Archives of Physical Medicine and Rehabilitation, 85, 1694–1704.

    Article  PubMed  Google Scholar 

  • Hochhalter, A. K., Sweeney, W. A., Savage, L. M., Bakke, B. L., & Overmier, J. B. (2001). Using animal models to address the memory deficits of Wernicke-Korsakoff syndrome. In M. E. Carroll & J. B. Overmier (Eds.), Animal research and human health: Advancing human welfare through behavioral science (pp. 281–292). Washington, DC: American Psychological Association.

    Chapter  Google Scholar 

  • Homewood, J., Bond, N. W., & Mackenzie, A. (1997). The effects of single and repeated episodes of thiamin deficiency on memory in alcohol-consuming rats. Science, 14, 81–91.

    CAS  Google Scholar 

  • Iga, J. I., Araki, M., Ishimoto, Y., & Ohmori, T. (2001). A case of Korsakoff’s syndrome improved by high doses of donepezil. Alcohol and Alcoholism, 36, 553–555.

    Article  PubMed  CAS  Google Scholar 

  • Irle, E., & Markowitsch, H. J. (1983). Widespread neuroanatomical damage and learning deficits following chronic alcohol consumption or vitamin-B1 (thiamine) deficiency in rats. Behavioural Brain Research, 9, 277–294.

    Google Scholar 

  • Ke, Z. J., Wang, X., Fan, Z., & Luo, J. (2009). Ethanol promotes thiamine deficiency-induced neuronal death: involvement of double-stranded RNA-activated protein kinase. Alcohol Clinical Experimental Research, 33, 1097–1103.

    Article  CAS  Google Scholar 

  • Kopelman, M. D., Thomson, A. D., Guerrini, I., & Marshall, E. J. (2009). The Korskakoff syndrome: clinical aspects, psychology and treatment. Alcohol and Alcoholism, 44, 148–154.

    Article  PubMed  Google Scholar 

  • Kril, J. J., & Homewood, J. (1993). Neuronal changes in the cerebral cortex of the rat following alcohol treatment and thiamine deficiency. Journal of Neuropathology and Experimental Neuropathology, 52, 586–593.

    Article  CAS  Google Scholar 

  • Langlais, P. J., & Mair, R. G. (1990). Protective effects of the glutamate antagonist MK-801 on pyrithiamine-induced lesions and amino acid changes in rat brain. Journal of Neuroscience, 10, 1664–1674.

    PubMed  CAS  Google Scholar 

  • Langlais, P. J., & Zhang, S. X. (1993). Extracellular glutamate is increased in thalamus during thiamine deficiency-induced lesions and is blocked by MK-801. Journal of Neurochemistry, 61, 2175–2182.

    Article  PubMed  CAS  Google Scholar 

  • Langlais, P. J., & Savage, L. M. (1995). Thiamine deficiency in rats produces cognitive and memory deficits on spatial tasks that correlate with tissue loss in diencephalon, cortex and white matter. Behavioural Brain Research, 68, 75–89.

    Article  PubMed  CAS  Google Scholar 

  • Langlais, P. J., & Zhang, S. X. (1997). Cortical and subcortical white matter damage without Wernicke’s encephalopathy after recovery from thiamine deficiency in the rat. Alcoholism, Clinical and Experimental Research, 21, 434–443.

    PubMed  CAS  Google Scholar 

  • Langlais, P. J., Mair, R. G., Anderson, C. D., & McEntee, W. J. (1988). Long-lasting changes during thiamine deficiency-induced lesions and amino acid changes in the rat brain. Neurochemistry Research, 13, 1199–1206.

    Article  CAS  Google Scholar 

  • Langlais, P. J., Mandel, R. J., & Mair, R. G. (1992). Diencephalic lesions, learning impairments, and intact retrograde memory following acute thiamine deficiency in the rat. Behavioural Brain Research, 48, 177–185.

    Article  PubMed  CAS  Google Scholar 

  • Langlais, P. J., Anderson, G., Guo, S. X., & Bondy, S. C. (1996a). Increased cerebral free radical production during thiamine deficiency. Metabolic Brain Disease, 12, 137–143.

    Article  Google Scholar 

  • Langlais, P. J., Zhang, S. X., & Savage, L. M. (1996b). Neuropathology of thiamine deficiency: an update on the comparative analysis of human disorders and experimental models. Metabolic Brain Disease, 11, 19–35.

    Article  CAS  Google Scholar 

  • Lee, J., Duan, W., & Mattson, M. P. (2002). Evidence that brain-derived neurotrophic factor is required for basal neurogenesis and mediates, in part, the enhancement of neurogenesis by dietary restriction in the hippocampus of adult mice. Journal of Neurochemistry, 82, 1367–1375.

    Article  PubMed  CAS  Google Scholar 

  • Le Roch, K., Riche, D., & Sara, S. J. (1987). Persistence of habituation deficits after neurological recovery from severe thiamine deprivation. Behavioural Brain Research, 26, 37–46.

    Article  PubMed  Google Scholar 

  • Leasure, J. L., & Nixon, K. (2010). Exercise neuroprotection in a rat model of binge alcohol consumption. Alcoholism, Clinical and Experimental Research, 34, 404–414.

    Article  PubMed  Google Scholar 

  • Loukavenko, E. A., Ottley, M. C., Morgan, J. P., Wolff, M., & Dairymple-Alford, J. C. (2007). Towards therapy to relieve memory impairments after anterior thalamic lesions: improved spatial working memory after immediate and delayed postoperative enrichment. European Journal of Neuroscience, 26, 3267–3276.

    Article  PubMed  Google Scholar 

  • Mair, R. G. (1994). On the role of thalamic pathology in diencephalic amnesia. Reviews in Neuroscience, 5, 105–140.

    Article  CAS  Google Scholar 

  • Mair, R. G., Anderson, C. D., Langlais, P. J., & McEntee, W. J. (1985). Thiamine deficiency depletes cortical norepinephrine and impairs learning processes in the rat. Brain Research, 360, 273–284.

    Article  PubMed  CAS  Google Scholar 

  • Mair, R. G., Anderson, C. D., Langlais, P. J., & McEntee, W. J. (1988). Behavioral impairments, brain lesions, and monoaminergic activity in the rat following recovery from a bout of thiamine deficiency. Behavioural Brain Research, 27, 223–239.

    Article  PubMed  CAS  Google Scholar 

  • Mair, R. G., Knoth, R. L., Rabchenuk, S. A., & Langlais, P. J. (1991a). Impairment of olfactory, auditory, and spatial serial reversal learning in rats recovered from pyrithiamine-induced thiamine deficiency. Behavioral Neuroscience, 105, 360–374.

    Article  CAS  Google Scholar 

  • Mair, R. G., Otto, T. A., Knoth, R. L., Rabchenuk, S. A., & Langlais, P. J. (1991b). Analysis of aversively conditioned learning and memory in rats recovered from pyrithiamine-induced thiamine deficiency. Behavioral Neuroscience, 105, 351–359.

    Article  CAS  Google Scholar 

  • Mair, R. G., Burk, J. A., & Porter, M. C. (1998). Lesions of the frontal cortex, hippocampus, and intralaminar thalamic nuclei have distinct effects on remembering in rats. Behavioral Neuroscience, 112, 772–792.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell, A. S., & Dalrymple-Alford, J. C. (2005). Dissociable memory effects after medial thalamus lesions in the rat. European Journal of Neuroscience, 22, 973–985.

    Article  PubMed  Google Scholar 

  • Mitchell, A. S., & Dalrymple-Alford, J. C. (2006). Lateral and anterior thalamic lesions impair independent memory systems. Learning & Memory, 13, 388–396.

    Article  Google Scholar 

  • Nakagawasai, O. (2005). Behavioral and neurochemical alterations following thiamine deficiency in rodents: relationship to functions of cholinergic neurons. The Pharmaceutical Society of Japan, 125, 549–554.

    CAS  Google Scholar 

  • Nakagawasai, O., Tadano, T., Hozumi, S., Tan-No, K., Niijima, F., & Kisara, K. (2000). Immunohistochemical estimation of brain choline acetyltransferase and somatostatin related to the impairment of avoidance learning induced by thiamine deficiency. Brain Research Bulletin, 52, 189–196.

    Article  PubMed  CAS  Google Scholar 

  • Nakagawasai, O., Tadano, T., Hozumi, S., Taniguchi, R., Yamadera, F., Tan-No, F., Niijima, H., Arai, H., Yasuhara, H., Kinemuchi, H., & Kisara, K. (2001). Inolvement of muscarinic receptor on the impairment of avoidance learning in mice fed a thiamine-deficient diet. Biogenic Amines, 16, 199–210.

    CAS  Google Scholar 

  • Nonner, D., Barrett, E. F., & Barrett, J. N. (1996). Neurotrophin effects on survival and expression of cholinergic properties in cultured rat septal neurons under normal and stress conditions. The Journal of Neuroscience, 16, 6665–6675.

    PubMed  CAS  Google Scholar 

  • Oscar-Berman, M., & Evert, D. (1997). Alcoholic Korsakoff’s syndrome. In P. D. Nussbaum (Ed.), Handbook of neuropsychology and aging (pp. 201–215). New York: Plenum.

    Google Scholar 

  • Oscar-Berman, M., Kirkley, S. M., Gansler, D. A., & Couture, A. (2004). Comparisons of Korsakoff and non-Korsakoff alcoholics on neuropsychological tests of prefrontal brain functioning. Alcoholism, Clinical and Experimental Research, 28, 667–675.

    Article  PubMed  Google Scholar 

  • Paller, K. A., Acharya, A., Richardson, A. P., Plaisant, O., Shimamura, A. P., Reed, B. R., & Jagust, W. J. (1997). Functional neuroimaging of cortical dysfunction in alcoholic Korsakoff’s syndrome. Journal of Cognitive Neuroscience, 9, 277–293.

    Article  Google Scholar 

  • Pannunzio, P., Hazell, A. S., Pannunzio, M., Rao, K. V., & Butterworth, R. F. (2000). Thiamine deficiency results in metabolic acidosis and energy failure in cerebellar granule cells: an in vitro model for the study of cell death mechanisms in Wernicke’s encephalopathy. Journal of Neuroscience Research, 62, 286–292.

    Article  PubMed  CAS  Google Scholar 

  • Pfefferbaum, A., Adalsteinsson, E., Bell, R. L., & Sullivan, E. V. (2007). Development and resolution of brain lesions caused by pyrithiamine- and dietary-induced thiamine deficiency and alcohol exposure in the alcohol-preferring rat: a longitudinal magnetic resonance imaging and spectroscopy study. Neuropsychopharmacology, 32, 1159–1177.

    Article  PubMed  CAS  Google Scholar 

  • Philips, S. C., Harper, C., & Kril, J. (1987). A quantitative histological study of the cerebellar vermis in alcoholic patients. Brain, 110, 301–314.

    Article  Google Scholar 

  • Pires, R. G. W., Pereira, S. R. C., Pittella, J. E. H., Franco, G. C., Ferreira, C. L. M., Fernandes, P. A., & Ribeiro, A. M. (2001). The contribution of mild thiamine deficiency and ethanol consumption to central cholinergic dysfunction and rats’ open-field performance impairment. Pharmacology Biochemistry and Behavior, 70, 227–235.

    Article  CAS  Google Scholar 

  • Pires, R. G. W., Pereira, S. R. C., Oliveira-Silva, I., Franco, G. C., & Ribeiro, A. M. (2005). Cholinergic parameters and the retrieval of learned and re-learned spatial information: a study using a model of Wernicke-Korsakoff Syndrome. Behavioural Brain Research, 162, 11–21.

    Article  PubMed  CAS  Google Scholar 

  • Pitkin, S. R., & Savage, L. M. (2001). Aging potentiates the acute and chronic neurological symptoms of pyrithiamine-induced thiamine deficiency in the rodent. Behavioural Brain Research, 119, 167–177.

    Article  PubMed  CAS  Google Scholar 

  • Pitkin, S. R., & Savage, L. M. (2004). Age-related vulnerability to diencephalic amnesia produced by thiamine deficiency: the role of time of insult. Behavioural Brain Research, 148, 93–105.

    Article  PubMed  CAS  Google Scholar 

  • Reed, L. J., Lasserson, D., Marsden, P., Stanhope, N., Stevens, T., Bello, F., Kingsley, D., Colchester, A., & Kopelman, M. D. (2003). FDG-PET findings in the Wernicke-Korsakoff syndrome. Cortex, 39, 1027–1045.

    Article  PubMed  Google Scholar 

  • Robinson, J. K., & Mair, R. G. (1992). MK-801 prevents brain lesions and delayed-nonmatching-to-sample deficits produced by pyrithiamine-induced encephalopathy in rats. Behavioral Neuroscience, 106, 623–633.

    Article  PubMed  CAS  Google Scholar 

  • Roland, J. J., & Savage, L. M. (2007). Blunted hippocampal, but not striatal, acetylcholine efflux parallels learning impairment in diencephalic-lesioned rats. Neurobiology of Learning and Memory, 87, 123–132.

    Article  PubMed  CAS  Google Scholar 

  • Roland, J. J., & Savage, L. M. (2009). The role of cholinergic and GABAergic medial septal/diagonal band cell populations in the emergence of diencephalic amnesia. Neuroscience, 160, 32–41.

    Article  PubMed  CAS  Google Scholar 

  • Roland, J. J., Mark, K., Vetreno, R. P., & Savage, L. M. (2008). Increasing hippocampal acetylcholine levels enhance behavioral performance in an animal model of diencephalic amnesia. Brain Research, 1234, 116–127.

    Article  PubMed  CAS  Google Scholar 

  • Roland, J. J., Levinson, M., Vetreno, R. P., & Savage, L. M. (2010). Differential effects of systemic and intraseptal administration of the acetylcholinesterase inhibitor tacrine on the recovery of spatial behavior in an animal model of diencephalic amnesia. European Journal of Pharmacology, 629, 31–39.

    Article  PubMed  CAS  Google Scholar 

  • Sairanen, M., Lucas, G., Emfors, P., Castren, M., & Castren, E. (2005). Brain-derived neurotrophic factor and antidepressant drugs have different but coordinated effects on neuronal turnover, proliferation, and survival in the adult dentate gyrus. The Journal of Neuroscience, 25, 1089–1094.

    Article  PubMed  CAS  Google Scholar 

  • Savage, L. M. (2012). Sustaining high acetylcholine levels in the frontal cortex, but not retrosplenial cortex, recovers spatial memory performance in a rodent model of diencephalic amnesia. Behavioral Neuroscience, 126, 226–236.

    Google Scholar 

  • Savage, L. M., & Guarino, S. (2010). Memory for reward location is enhanced even though acetylcholine efflux within the amygdala is impaired in rats with damage to the diencephalon produced by thiamine deficiency. Neurobiology of Learning and Memory, 94, 554–560.

    Article  PubMed  CAS  Google Scholar 

  • Savage, L. M., & Ramos, R. L. (2009). Reward expectation alters learning and memory: the impact of the amygdala on appetitive-driven behaviors. Behavioural Brain Research, 198, 1–12.

    Article  PubMed  Google Scholar 

  • Savage, L. M., Castillo, R., & Langlais, P. J. (1998). Effects of lesions of thalamic intralaminar and midline nuclei and internal meduallary lamina on spatial memory and object discrimination. Behavioral Neuroscience, 112, 1339–1352.

    Article  PubMed  CAS  Google Scholar 

  • Savage, L. M., Pitkin, S. R., & Knitowski, K. M. (1999). Rats exposed to acute pyrithiamine-induced thiamine deficiency are more sensitive to the amnestic effects of scopolamine and MK-801: examination of working memory, response selection, and reinforcement contingencies. Behavioural Brain Research, 104, 13–26.

    Article  PubMed  CAS  Google Scholar 

  • Savage, L. M., Chang, Q., & Gold, P. E. (2003). Diencephalic damage decreases hippocampal acetylcholine release during spontaneous alternation testing. Learning & Memory, 10, 242–246.

    Article  Google Scholar 

  • Savage, L. M., Roland, J. J., & Klintsova, A. (2007). Selective septohippocampal-but not forebrain amygdalar-cholinergic dysfunction in diencephalic amnesa. Brain Research, 1139, 210–219.

    Article  PubMed  CAS  Google Scholar 

  • Savage, L. M., Hall, J. M., & Vetreno, R. P. (2011). Anterior thalamic lesions alter both hippocampal-dependent behavior and hippocampal acetylcholine release in the rat. Learning & Memory, 18, 751–758.

    Article  CAS  Google Scholar 

  • Savage, L. M., Sweet, A. J., Castillo, R., & Langlais, P. J. (1997). The effects of lesions to the thalamic lateral internal medullary lamina nuclei and posterior nuclei on learning, memory, and habituation in the rat. Behavioural Brain Research, 82, 133–147.

    Article  PubMed  CAS  Google Scholar 

  • Squire, L. R. (1980). Specifying the defect in human amnesia: storage, retrieval and semantics. Neuropsychologia, 18, 369–372.

    Article  PubMed  CAS  Google Scholar 

  • Squire, L. R. (1982). The neuropsychology of human memory. Annual Review of Neuroscience, 5, 241–273.

    Article  PubMed  CAS  Google Scholar 

  • Squire, L. R., Amaral, D. G., & Press, G. A. (1990). Magnetic resonance imaging of the hippocampal formation and mammillary nuclei distinguish medial temporal lobe and diencephalic amnesia. Journal of Neuroscience, 10, 3106–3117.

    PubMed  CAS  Google Scholar 

  • Sullivan, E. V., & Marsh, L. (2003). Hippocampal volume deficits in alcoholic Korsakoff’s syndrome. Neurology, 61, 1716–1719.

    Article  PubMed  Google Scholar 

  • Sullivan, E. V., & Pfefferbaum, A. (2009). Neuroimaging of the Wernicke-Korsakoff syndrome. Alcohol and Alcoholism, 44, 155–165.

    Article  PubMed  Google Scholar 

  • Takahashi, H., Nakazawa, S., Yoshino, Y., & Shimura, T. (1988). Metabolic studies of the edematous cerebral cortex of the pyrithiamine-treated thiamine deficient rat. Brain Research, 441, 202–208.

    Article  PubMed  CAS  Google Scholar 

  • Todd, K. G., & Butterworth, R. F. (1999). Mechanisms of selective neuronal cell death due to thiamine deficiency. Annals of the New York Academy of Sciences, 893, 404–411.

    Article  PubMed  CAS  Google Scholar 

  • Troncoso, J. C., Johnston, M. V., Hess, K. M., Griffin, J. W., & Price, D. L. (1981). Model of Wernicke’s encephalopathy. Archives of Neurology, 38, 350–354.

    Article  PubMed  CAS  Google Scholar 

  • Vann, S. D. (2010). Re-evaluating the role of the mammillary bodies in memory. Neuropsychologia, 48, 2316–2327.

    Article  PubMed  Google Scholar 

  • Van Tilborg, I. A., Kessels, R. P., Kruijt, P., Wester, A. J., & Hulstijn, W. (2011). Spatial and nonspatial implicit motor learning in Korsakoff’s amnesia: evidence for selective deficits. Experimental Brain Research, 214, 427–435.

    Article  Google Scholar 

  • Vetreno, R. P., Anzalone, S. J., & Savage, L. M. (2008). Impaired, spared, and enhanced ACh efflux across the hippocampus and striatum in diencephalic amnesia is dependent on task demands. Neurobiology of Learning and Memory, 90, 237–244.

    Article  PubMed  CAS  Google Scholar 

  • Vetreno, R. P., Hall, J. M., & Savage, L. M. (2011a). Alcohol-related amnesia and dementia: animal models have revealed the contributions of different etiological factors on neuropathology, neurochemical dysfunction and cognitive impairment. Neurobiology of Learning and Memory, 96, 596–608.

    Article  CAS  Google Scholar 

  • Vetreno, R. P., Klintsova, A., & Savage, L. M. (2011b). Stage-dependent alterations of progenitor cell proliferation and neurogenesis in an animal model of Wernicke-Korsakoff syndrome. Brain Research, 1391, 132–146.

    Article  CAS  Google Scholar 

  • Vetreno, R. P., Ramos, R. L., Anzalone, S., & Savage, L. M. (2012). Brain and behavioral pathology in an animal model of Wernicke’s encephalopathy and Wernicke-Korsakoff syndrome. Brain Research, 1436, 178–192.

    Article  PubMed  CAS  Google Scholar 

  • Vigil, A. F. B., Oliveira-silva, I. F., Ferreira, L. F., Pereira, S. R. C., & Ribeiro, A. M. (2010). Spatial memory deficits and thalamic serotonergic metabolite change in thiamine deficient rats. Behavioural Brain Research, 210, 140–142.

    Article  PubMed  CAS  Google Scholar 

  • Volterra, A., Trotti, D., Tromba, C., Floridi, S., & Racagni, G. (1994). Glutamate uptake inhibition by oxygen free radicals in rat cortical astrocytes. The Journal of Neuroscience, 14, 2924–2932.

    PubMed  CAS  Google Scholar 

  • Watanabe, I. (1978). Pyrithiamine-induced acute thiamine-deficient encephalopathy in the mouse. Experimental and Molecular Pathology, 28, 381–394.

    Article  PubMed  CAS  Google Scholar 

  • Witt, E. D. (1985). Neuroanatomical consequences of thiamine deficiency: a comparative analysis. Alcohol and Alcoholism, 20, 201–221.

    PubMed  CAS  Google Scholar 

  • Wolff, M., Loukavenko, E. A., Will, B. E., & Dalrymple-Alford, J. C. (2008). The extended hippocampal-diencephalic memory system: enriched housing promotes recovery of the flexible use of spatial representations after anterior thalamic lesions. Hippocampus, 18, 996–1007.

    Article  PubMed  Google Scholar 

  • Zhang, S. X., Weilersbacher, G. S., Henderson, S. W., Corso, T., Olney, J. W., & Langlais, P. J. (1995). Excitotoxic cytopathology, progression, and reversibility of thiamine deficiency-induced diencephalic lesions. Journal of Neuropathology and Experimental Neurology, 54, 255–267.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, N., Zhong, C., Wang, Y., Zhao, Y., Gong, N., Zhou, G., Xu, T., & Hong, Z. (2008). Impaired hippocampal neurogenesis is involved in cognitive dysfunction induced by thiamine deficiency at early pre-pathological lesion stage. Neurobiology of Disease, 29, 176–185.

    Article  PubMed  CAS  Google Scholar 

  • Zimitat, C., Kril, J., Harper, C., & Nixon, P. (1990). Progression of neurological disease in thiamine-deficient rats is enhanced by ethanol. Alcohol, 7, 493–501.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Ryan Vetreno for assistance with photographs of the brain. This research was funded by grants NINDS 054272 and ARRA NINDS 054272-S1 to LMS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa M. Savage.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Savage, L.M., Hall, J.M. & Resende, L.S. Translational Rodent Models of Korsakoff Syndrome Reveal the Critical Neuroanatomical Substrates of Memory Dysfunction and Recovery. Neuropsychol Rev 22, 195–209 (2012). https://doi.org/10.1007/s11065-012-9194-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11065-012-9194-1

Keywords

Navigation