Skip to main content

Advertisement

Log in

Ischemia Reperfusion Injury Induced Blood Brain Barrier Dysfunction and the Involved Molecular Mechanism

  • Review
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Stroke is characterized by the abrupt failure of blood flow to a specific brain region, resulting in insufficient supply of oxygen and glucose to the ischemic tissues. Timely reperfusion of blood flow can rescue dying tissue but can also lead to secondary damage to both the infarcted tissues and the blood–brain barrier, known as ischemia/reperfusion injury. Both primary and secondary damage result in biphasic opening of the blood–brain barrier, leading to blood–brain barrier dysfunction and vasogenic edema. Importantly, blood–brain barrier dysfunction, inflammation, and microglial activation are critical factors that worsen stroke outcomes. Activated microglia secrete numerous cytokines, chemokines, and inflammatory factors during neuroinflammation, contributing to the second opening of the blood–brain barrier and worsening the outcome of ischemic stroke. TNF-α, IL-1β, IL-6, and other microglia-derived molecules have been shown to be involved in the breakdown of blood–brain barrier. Additionally, other non-microglia-derived molecules such as RNA, HSPs, and transporter proteins also participate in the blood–brain barrier breakdown process after ischemic stroke, either in the primary damage stage directly influencing tight junction proteins and endothelial cells, or in the secondary damage stage participating in the following neuroinflammation. This review summarizes the cellular and molecular components of the blood–brain barrier and concludes the association of microglia-derived and non-microglia-derived molecules with blood–brain barrier dysfunction and its underlying mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Kuriakose D, Xiao Z (2020) Pathophysiology and treatment of stroke: present status and future perspectives. Int J Mol Sci. https://doi.org/10.3390/ijms21207609

    Article  PubMed  PubMed Central  Google Scholar 

  2. Siesjö BK, Katsura K, Kristian T et al (1996) Molecular mechanisms of acidosis-mediated damage. Mechanisms of secondary brain damage in cerebral ischemia and trauma. Springer, Vienna

    Google Scholar 

  3. Liu L, Kearns KN, Eli I et al (2021) Microglial calcium waves during the hyperacute phase of ischemic stroke. Stroke 52(1):274–283. https://doi.org/10.1161/STROKEAHA.120.032766

    Article  CAS  PubMed  Google Scholar 

  4. Menaceur C, Gosselet F, Fenart L et al (2021) The blood-brain barrier, an evolving concept based on technological advances and cell-cell communications. Cells 11(1):133. https://doi.org/10.3390/cells11010133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang Y, Zhu Y, Wang J et al (2023) Purinergic signaling: a gatekeeper of blood-brain barrier permeation. Front Pharmacol. https://doi.org/10.3389/fphar.2023.1112758

    Article  PubMed  PubMed Central  Google Scholar 

  6. Liebner S, Dijkhuizen RM, Reiss Y et al (2018) Functional morphology of the blood–brain barrier in health and disease. Acta Neuropathol 135:311–336. https://doi.org/10.1007/s00401-018-1815-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schaeffer S, Iadecola C (2021) Revisiting the neurovascular unit. Nat Neurosci 24(9):1198–1209. https://doi.org/10.1038/s41593-021-00904-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen S, Shao L, Ma L (2021) Cerebral edema formation after stroke: emphasis on blood–brain barrier and the lymphatic drainage system of the brain. Front Cell Neurosci 15:716825. https://doi.org/10.3389/fncel.2021.716825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Alajangi HK, Kaur M, Sharma A et al (2022) Blood–brain barrier: emerging trends on transport models and new-age strategies for therapeutics intervention against neurological disorders. Mol Brain 15(1):1–28. https://doi.org/10.1186/s13041-022-00937-4

    Article  Google Scholar 

  10. Sashindranath M, Nandurkar HH (2021) Endothelial dysfunction in the brain: setting the stage for stroke and other cerebrovascular complications of COVID-19. Stroke 52(5):1895–1904. https://doi.org/10.1161/STROKEAHA.120.032711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Krueger M, Mages B, Hobusch C et al (2019) Endothelial edema precedes blood-brain barrier breakdown in early time points after experimental focal cerebral ischemia. Acta Neuropathol Commun 7(1):1–17. https://doi.org/10.1186/s40478-019-0671-0

    Article  Google Scholar 

  12. Ahnstedt H, Sweet J, Cruden P et al (2016) Effects of early post-ischemic reperfusion and tPA on cerebrovascular function and nitrosative stress in female rats. Transl Stroke Res 7(3):228–238. https://doi.org/10.1007/s12975-016-0468-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Krueger M, Härtig W, Frydrychowicz C et al (2017) Stroke-induced blood–brain barrier breakdown along the vascular tree–no preferential affection of arteries in different animal models and in humans. J Cereb Blood Flow Metab 37(7):2539–2554. https://doi.org/10.1177/0271678X16670922

    Article  PubMed  Google Scholar 

  14. Chen AQ, Fang Z, Chen XL et al (2019) Microglia-derived TNF-alpha mediates endothelial necroptosis aggravating blood brain-barrier disruption after ischemic stroke. Cell Death Dis 10(7):487. https://doi.org/10.1038/s41419-019-1716-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shi W, Wei X, Wang Z et al (2016) HDAC 9 exacerbates endothelial injury in cerebral ischaemia/reperfusion injury. J Cell Mol Med 20(6):1139–1149. https://doi.org/10.1111/jcmm.12803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Heinemann U, Schuetz A (2019) Structural features of tight-junction proteins. Int J Mol Sci 20(23):6020. https://doi.org/10.3390/ijms20236020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Funke L, Dakoji S, Bredt DS (2005) Membrane-associated guanylate kinases regulate adhesion and plasticity at cell junctions. Annu Rev Biochem 74:219–245. https://doi.org/10.1146/annurev.biochem.74.082803.133339

    Article  CAS  PubMed  Google Scholar 

  18. Campbell HK, Maiers JL, DeMali KA (2017) Interplay between tight junctions & adherens junctions. Exp Cell Res 358(1):39–44. https://doi.org/10.1016/j.yexcr.2017.03.061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Beutel O, Maraspini R, Pombo-Garcia K et al (2019) Phase separation of zonula occludens proteins drives formation of tight junctions. Cell 179(4):923–936. https://doi.org/10.1016/j.cell.2019.10.011

    Article  CAS  PubMed  Google Scholar 

  20. Tsukita S, Tanaka H, Tamura A (2019) The claudins: from tight junctions to biological systems. Trends Biochem Sci 44(2):141–152. https://doi.org/10.1016/j.tibs.2018.09.008

    Article  CAS  PubMed  Google Scholar 

  21. Yang Z, Lin P, Chen B et al (2021) Autophagy alleviates hypoxia-induced blood-brain barrier injury via regulation of CLDN5 (claudin 5). Autophagy 17(10):3048–3067. https://doi.org/10.1080/15548627.2020.1851897

    Article  CAS  PubMed  Google Scholar 

  22. Paradis T, Bègue H, Basmaciyan L et al (2021) Tight junctions as a key for pathogens invasion in intestinal epithelial cells. Int J Mol Sci 22(5):2506. https://doi.org/10.3390/ijms22052506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Itoh M, Morita K, Tsukita S (1999) Characterization of ZO-2 as a MAGUK family member associated with tight as well as adherens junctions with a binding affinity to occludin and alpha catenin. J Biol Chem 274(9):5981–5986. https://doi.org/10.1074/jbc.274.9.5981

    Article  CAS  PubMed  Google Scholar 

  24. Li W, Chen Z, Chin I et al (2018) The role of VE-cadherin in blood-brain barrier integrity under central nervous system pathological conditions. Curr Neuropharmacol 16(9):1375–1384. https://doi.org/10.2174/1570159x16666180222164809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Anquetil T, Solinhac R, Jaffre A et al (2021) PI3KC2β inactivation stabilizes VE-cadherin junctions and preserves vascular integrity. EMBO Rep. https://doi.org/10.15252/embr.202051299

    Article  PubMed  PubMed Central  Google Scholar 

  26. Weinl C, Castaneda Vega S, Riehle H et al (2015) Endothelial depletion of murine SRF/MRTF provokes intracerebral hemorrhagic stroke. Proc Natl Acad Sci 112(32):9914–9919. https://doi.org/10.1073/pnas.1509047112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang S, An Q, Wang T et al (2018) Autophagy-and MMP-2/9-mediated reduction and redistribution of ZO-1 contribute to hyperglycemia-increased blood–brain barrier permeability during early reperfusion in stroke. Neuroscience 377:126–137. https://doi.org/10.1016/j.neuroscience.2018.02.035

    Article  CAS  PubMed  Google Scholar 

  28. Kim K-A, Kim D, Kim J-H et al (2020) Autophagy-mediated occludin degradation contributes to blood–brain barrier disruption during ischemia in bEnd.3 brain endothelial cells and rat ischemic stroke models. Fluids Barriers CNS. https://doi.org/10.1186/s12987-020-00182-8

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sato Y, Falcone-Juengert J, Tominaga T et al (2022) Remodeling of the neurovascular unit following cerebral ischemia and hemorrhage. Cells 11(18):2823. https://doi.org/10.3390/cells11182823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tachibana M, Ago T, Wakisaka Y et al (2017) Early reperfusion after brain ischemia has beneficial effects beyond rescuing neurons. Stroke 48(8):2222–2230. https://doi.org/10.1161/STROKEAHA.117.016689

    Article  CAS  PubMed  Google Scholar 

  31. Zhou S-Y, Guo Z-N, Zhang D-H et al (2022) The role of pericytes in ischemic stroke: fom cellular functions to therapeutic targets. Front Mol Neurosci. https://doi.org/10.3389/fnmol.2022.866700

    Article  PubMed  PubMed Central  Google Scholar 

  32. Dalkara T, Alarcon-Martinez L, Yemisci M (2019) Pericytes in ischemic stroke. Springer, Cham

    Book  Google Scholar 

  33. Sun Z, Gao C, Gao D et al (2021) Reduction in pericyte coverage leads to blood-brain barrier dysfunction via endothelial transcytosis following chronic cerebral hypoperfusion. Fluids Barriers CNS 18(1):21. https://doi.org/10.1186/s12987-021-00255-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Michinaga S, Koyama Y (2019) Dual roles of astrocyte-derived factors in regulation of blood-brain barrier function after brain damage. Int J Mol Sci 20(3):571. https://doi.org/10.3390/ijms20030571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Haley MJ, Lawrence CB (2017) The blood–brain barrier after stroke: structural studies and the role of transcytotic vesicles. J Cereb Blood Flow Metab 37(2):456–470. https://doi.org/10.1177/0271678X16629976

    Article  PubMed  Google Scholar 

  36. Xu D, Kong T, Shao Z et al (1867) (2021) Orexin-A alleviates astrocytic apoptosis and inflammation via inhibiting OX1R-mediated NF-κB and MAPK signaling pathways in cerebral ischemia/reperfusion injury. Biochimica et Biophysica Acta (BBA) 11:166230. https://doi.org/10.1016/j.bbadis.2021.166230

    Article  CAS  Google Scholar 

  37. Daneman R, Engelhardt B (2017) Brain barriers in health and disease. Neurobiol Dis 107:1–3. https://doi.org/10.1016/j.nbd.2017.05.008

    Article  PubMed  Google Scholar 

  38. Eilam R, Segal M, Malach R et al (2018) A strocyte disruption of neurovascular communication is linked to cortical damage in an animal model of multiple sclerosis. Glia 66(5):1098–1117. https://doi.org/10.1002/glia.23304

    Article  PubMed  Google Scholar 

  39. Ronaldson PT, Davis TP (2020) Regulation of blood-brain barrier integrity by microglia in health and disease: a therapeutic opportunity. J Cereb Blood Flow Metab 40(1):S6–S24. https://doi.org/10.1177/0271678X20951995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Varatharaj A, Galea I (2017) The blood-brain barrier in systemic inflammation. Brain Behav Immun 60:1–12. https://doi.org/10.1016/j.bbi.2016.03.010

    Article  CAS  PubMed  Google Scholar 

  41. Jiang X, Andjelkovic AV, Zhu L et al (2018) Blood-brain barrier dysfunction and recovery after ischemic stroke. Prog Neurobiol 163–164:144–171. https://doi.org/10.1016/j.pneurobio.2017.10.001

    Article  CAS  PubMed  Google Scholar 

  42. Keaney J, Campbell M (2015) The dynamic blood–brain barrier. FEBS J 282(21):4067–4079. https://doi.org/10.1111/febs.13412

    Article  CAS  PubMed  Google Scholar 

  43. Chen A-Q, Fang Z, Chen X-L et al (2019) Microglia-derived TNF-α mediates endothelial necroptosis aggravating blood brain–barrier disruption after ischemic stroke. Cell Death Dis 10(7):1–18. https://doi.org/10.1038/s41419-019-1716-9

    Article  CAS  Google Scholar 

  44. Dong R, Huang R, Wang J et al (2021) Effects of microglial activation and polarization on brain injury after stroke. Front Neurol 12:620948. https://doi.org/10.3389/fneur.2021.620948

    Article  PubMed  PubMed Central  Google Scholar 

  45. Li S, Kumar TP, Joshee S et al (2018) Endothelial cell-derived GABA signaling modulates neuronal migration and postnatal behavior. Cell Res 28(2):221–248. https://doi.org/10.1038/cr.2017.135

    Article  CAS  PubMed  Google Scholar 

  46. Pulido RS, Munji RN, Chan TC et al (2020) Neuronal activity regulates blood-brain barrier efflux transport through endothelial circadian genes. Neuron 108(5):937–952. https://doi.org/10.1016/j.neuron.2020.09.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hrvatin S, Hochbaum DR, Nagy MA et al (2018) Single-cell analysis of experience-dependent transcriptomic states in the mouse visual cortex. Nat Neurosci 21(1):120–129. https://doi.org/10.1038/s41593-017-0029-5

    Article  CAS  PubMed  Google Scholar 

  48. Zhang X, Wei M, Fan J et al (2021) Ischemia-induced upregulation of autophagy preludes dysfunctional lysosomal storage and associated synaptic impairments in neurons. Autophagy 17(6):1519–1542. https://doi.org/10.1080/15548627.2020.1840796

    Article  CAS  PubMed  Google Scholar 

  49. Kim Y, Lee S, Zhang H et al (2020) CLEC14A deficiency exacerbates neuronal loss by increasing blood-brain barrier permeability and inflammation. J Neuroinflammation 17(1):1–14. https://doi.org/10.1186/s12974-020-1727-6

    Article  CAS  Google Scholar 

  50. Shao Z, Tu S, Shao A (2019) Pathophysiological mechanisms and potential therapeutic targets in intracerebral hemorrhage. Front Pharmacol 10:1079. https://doi.org/10.3389/fphar.2019.01079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bu L, Cao X, Zhang Z et al (2020) Decreased secretion of tumor necrosis factor-alpha attenuates macrophages-induced insulin resistance in skeletal muscle. Life Sci 244:117304. https://doi.org/10.1016/j.lfs.2020.117304

    Article  CAS  PubMed  Google Scholar 

  52. Yang T, Feng C, Wang D et al (2020) Neuroprotective and anti-inflammatory effect of tangeretin against cerebral ischemia-reperfusion injury in rats. Inflammation 43(6):2332–2343. https://doi.org/10.1007/s10753-020-01303-z

    Article  CAS  PubMed  Google Scholar 

  53. Fang M, Zhong WH, Song WL et al (2018) Ulinastatin ameliorates pulmonary capillary endothelial permeability induced by sepsis through protection of tight junctions via inhibition of TNF-alpha and related pathways. Front Pharmacol 9:823. https://doi.org/10.3389/fphar.2018.00823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lin SY, Wang YY, Chang CY et al (2021) TNF-alpha receptor inhibitor alleviates metabolic and inflammatory changes in a rat model of ischemic stroke. Antioxidants (Basel). https://doi.org/10.3390/antiox10060851

    Article  PubMed  PubMed Central  Google Scholar 

  55. Liu X, Quan N (2018) Microglia and CNS interleukin-1: beyond immunological concepts. Front Neurol 9:8. https://doi.org/10.3389/fneur.2018.00008

    Article  PubMed  PubMed Central  Google Scholar 

  56. Lambertsen KL, Biber K, Finsen B (2012) Inflammatory cytokines in experimental and human stroke. J Cereb Blood Flow Metab 32(9):1677–1698. https://doi.org/10.1038/jcbfm.2012.88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chen X, Hovanesian V, Naqvi S et al (2018) Systemic infusions of anti-interleukin-1beta neutralizing antibodies reduce short-term brain injury after cerebral ischemia in the ovine fetus. Brain Behav Immun 67:24–35. https://doi.org/10.1016/j.bbi.2017.08.002

    Article  CAS  PubMed  Google Scholar 

  58. Wong R, Lenart N, Hill L et al (2019) Interleukin-1 mediates ischaemic brain injury via distinct actions on endothelial cells and cholinergic neurons. Brain Behav Immun 76:126–138. https://doi.org/10.1016/j.bbi.2018.11.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Salmeron KE, Maniskas ME, Edwards DN et al (2019) Interleukin 1 alpha administration is neuroprotective and neuro-restorative following experimental ischemic stroke. J Neuroinflammation 16:1–14. https://doi.org/10.1186/s12974-019-1599-9

    Article  CAS  Google Scholar 

  60. Fettelschoss A, Kistowska M, LeibundGut-Landmann S et al (2011) Inflammasome activation and IL-1β target IL-1α for secretion as opposed to surface expression. Proc Natl Acad Sci 108(44):18055–18060. https://doi.org/10.1073/pnas.1109176108

    Article  PubMed  PubMed Central  Google Scholar 

  61. Zhang W, Tian T, Gong S-X et al (2021) Microglia-associated neuroinflammation is a potential therapeutic target for ischemic stroke. Neural Regen Res 16(1):6. https://doi.org/10.4103/1673-5374.286954

    Article  CAS  PubMed  Google Scholar 

  62. Wang X, Yue TL, Young PR et al (1995) Expression of interleukin-6, c-fos, and zif268 mRNAs in rat ischemic cortex. J Cereb Blood Flow Metab 15(1):166–171. https://doi.org/10.1038/jcbfm.1995.18

    Article  CAS  PubMed  Google Scholar 

  63. Voirin AC, Perek N, Roche F (2020) Inflammatory stress induced by a combination of cytokines (IL-6, IL-17, TNF-α) leads to a loss of integrity on bEnd.3 endothelial cells in vitro BBB model. Brain Res 1730:146647. https://doi.org/10.1016/j.brainres.2020.146647

    Article  CAS  PubMed  Google Scholar 

  64. Jung JE, Kim GS, Chan PH (2011) Neuroprotection by interleukin-6 is mediated by signal transducer and activator of transcription 3 and antioxidative signaling in ischemic stroke. Stroke 42(12):3574–3579. https://doi.org/10.1161/strokeaha.111.626648

    Article  PubMed  PubMed Central  Google Scholar 

  65. Mahdiani S, Omidkhoda N, Rezaee R et al (2022) Induction of JAK2/STAT3 pathway contributes to protective effects of different therapeutics against myocardial ischemia/reperfusion. Biomed Pharmacother 155:113751. https://doi.org/10.1016/j.biopha.2022.113751

    Article  CAS  PubMed  Google Scholar 

  66. Takata F, Dohgu S, Matsumoto J et al (2018) Oncostatin M–induced blood-brain barrier impairment is due to prolonged activation of STAT3 signaling in vitro. J Cell Biochem 119(11):9055–9063. https://doi.org/10.1002/jcb.27162

    Article  CAS  PubMed  Google Scholar 

  67. Han J, Feng Z, Xie Y et al (2019) Oncostatin M-induced upregulation of SDF-1 improves bone marrow stromal cell migration in a rat middle cerebral artery occlusion stroke model. Exp Neurol 313:49–59

    Article  CAS  PubMed  Google Scholar 

  68. Hermans D, Houben E, Baeten P et al (2022) Oncostatin M triggers brain inflammation by compromising blood–brain barrier integrity. Acta Neuropathol 144(2):259–281. https://doi.org/10.1007/s00401-022-02445-0

    Article  CAS  PubMed  Google Scholar 

  69. Repovic P, Mi K, Benveniste EN (2003) Oncostatin M enhances the expression of prostaglandin E2 and cyclooxygenase-2 in astrocytes: synergy with interleukin-1β, tumor necrosis factor-α, and bacterial lipopolysaccharide. Glia 42(4):433–446. https://doi.org/10.1002/glia.10182

    Article  PubMed  Google Scholar 

  70. Hughes CE, Nibbs RJ (2018) A guide to chemokines and their receptors. FEBS J 285(16):2944–2971. https://doi.org/10.1111/febs.14466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hao Q, Vadgama JV, Wang P (2020) CCL2/CCR2 signaling in cancer pathogenesis. Cell Commun Signal 18:1–13. https://doi.org/10.1186/s12964-020-00589-8

    Article  CAS  Google Scholar 

  72. Dimitrijevic OB, Stamatovic SM, Keep RF et al (2006) Effects of the chemokine CCL2 on blood-brain barrier permeability during ischemia-reperfusion injury. J Cereb Blood Flow Metab 26(6):797–810. https://doi.org/10.1038/sj.jcbfm.9600229

    Article  CAS  PubMed  Google Scholar 

  73. Huang Y, Wang J, Cai J et al (2018) Targeted homing of CCR2-overexpressing mesenchymal stromal cells to ischemic brain enhances post-stroke recovery partially through PRDX4-mediated blood-brain barrier preservation. Theranostics 8(21):5929–5944. https://doi.org/10.7150/thno.28029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kapoor C, Vaidya S, Wadhwan V et al (2016) Seesaw of matrix metalloproteinases (MMPs). J Cancer Res Ther 12(1):28. https://doi.org/10.4103/0973-1482.157337

    Article  CAS  PubMed  Google Scholar 

  75. Ruan Z, Zhang D, Huang R et al (2022) Microglial activation damages dopaminergic neurons through MMP-2/-9-mediated increase of blood-brain barrier permeability in a Parkinson’s disease mouse model. Int J Mol Sci 23(5):2793. https://doi.org/10.3390/ijms23052793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lee E-J, Park J-S, Lee Y-Y et al (2018) Anti-inflammatory and anti-oxidant mechanisms of an MMP-8 inhibitor in lipoteichoic acid-stimulated rat primary astrocytes: involvement of NF-κB, Nrf2, and PPAR-γ signaling pathways. J Neuroinflammation. https://doi.org/10.1186/s12974-018-1363-6

    Article  PubMed  PubMed Central  Google Scholar 

  77. Beroun A, Mitra S, Michaluk P et al (2019) MMPs in learning and memory and neuropsychiatric disorders. Cell Mol Life Sci 76(16):3207–3228. https://doi.org/10.1007/s00018-019-03180-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Asahi M, Wang X, Mori T et al (2001) Effects of matrix metalloproteinase-9 gene knock-out on the proteolysis of blood-brain barrier and white matter components after cerebral ischemia. J Neurosci 21(19):7724–7732. https://doi.org/10.1523/jneurosci.21-19-07724.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Spampinato SF, Merlo S, Sano Y et al (2017) Astrocytes contribute to Aβ-induced blood-brain barrier damage through activation of endothelial MMP9. J Neurochem 142(3):464–477. https://doi.org/10.1111/jnc.14068

    Article  CAS  PubMed  Google Scholar 

  80. Liu MB, Wang W, Gao JM et al (2020) Icariside II attenuates cerebral ischemia/reperfusion-induced blood-brain barrier dysfunction in rats via regulating the balance of MMP9/TIMP1. Acta Pharmacol Sin 41(12):1547–1556. https://doi.org/10.1038/s41401-020-0409-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Jing N, Fang B, Li Z et al (2020) Exogenous activation of cannabinoid-2 receptor modulates TLR4/MMP9 expression in a spinal cord ischemia reperfusion rat model. J Neuroinflamm 17(1):1–14. https://doi.org/10.1186/s12974-020-01784-7

    Article  CAS  Google Scholar 

  82. Fish JE, Santoro MM, Morton SU et al (2008) miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell 15(2):272–284. https://doi.org/10.1016/j.devcel.2008.07.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bernstein DL, Zuluaga-Ramirez V, Gajghate S et al (2020) miR-98 reduces endothelial dysfunction by protecting blood-brain barrier (BBB) and improves neurological outcomes in mouse ischemia/reperfusion stroke model. J Cereb Blood Flow Metab 40(10):1953–1965. https://doi.org/10.1177/0271678x19882264

    Article  CAS  PubMed  Google Scholar 

  84. Harris TA, Yamakuchi M, Ferlito M et al (2008) MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc Natl Acad Sci USA 105(5):1516–1521. https://doi.org/10.1073/pnas.0707493105

    Article  PubMed  PubMed Central  Google Scholar 

  85. Pan J, Qu M, Li Y et al (2020) MicroRNA-126-3p/-5p overexpression attenuates blood-brain barrier disruption in a mouse model of middle cerebral artery occlusion. Stroke 51(2):619–627. https://doi.org/10.1161/strokeaha.119.027531

    Article  CAS  PubMed  Google Scholar 

  86. Wang P, Pan R, Weaver J et al (2021) MicroRNA-30a regulates acute cerebral ischemia-induced blood-brain barrier damage through ZnT4/zinc pathway. J Cereb Blood Flow Metab 41(3):641–655. https://doi.org/10.1177/0271678x20926787

    Article  CAS  PubMed  Google Scholar 

  87. Li Y, Zhang D, Wang X et al (2015) Hypoxia-inducible miR-182 enhances HIF1α signaling via targeting PHD2 and FIH1 in prostate cancer. Sci Rep 5:12495–12495. https://doi.org/10.1038/srep12495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Yi H, Huang Y, Yang F et al (2017) MicroRNA-182 aggravates cerebral ischemia injury by targeting inhibitory member of the ASPP family (iASPP). Arch Biochem Biophys 620:52–58. https://doi.org/10.1016/j.abb.2016.05.002

    Article  CAS  PubMed  Google Scholar 

  89. Wang Y, Wang MD, Xia YP et al (2018) MicroRNA-130a regulates cerebral ischemia-induced blood-brain barrier permeability by targeting Homeobox A5. Faseb J 32(2):935–944. https://doi.org/10.1096/fj.201700139RRR

    Article  CAS  PubMed  Google Scholar 

  90. Sun P, Zhang K, Hassan SH et al (2020) Endothelium-targeted deletion of microRNA-15a/16-1 promotes poststroke angiogenesis and improves long-term neurological recovery. Circ Res 126(8):1040–1057. https://doi.org/10.1161/CIRCRESAHA.119.315886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Burek M, König A, Lang M et al (2019) Hypoxia-induced MicroRNA-212/132 alter blood-brain barrier integrity through inhibition of tight junction-associated proteins in human and mouse brain microvascular endothelial cells. Transl Stroke Res 10(6):672–683. https://doi.org/10.1007/s12975-018-0683-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Yan H, Kanki H, Matsumura S et al (2021) MiRNA-132/212 regulates tight junction stabilization in blood-brain barrier after stroke. Cell Death Discov 7(1):380. https://doi.org/10.1038/s41420-021-00773-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hu H, Hone EA, Provencher EAP et al (2020) MiR-34a interacts with cytochrome c and shapes stroke outcomes. Sci Rep 10(1):3233. https://doi.org/10.1038/s41598-020-59997-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Shen J, Li G, Zhu Y et al (2021) Foxo1-induced miR-92b down-regulation promotes blood-brain barrier damage after ischaemic stroke by targeting NOX4. J Cell Mol Med 25(11):5269–5282. https://doi.org/10.1111/jcmm.16537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. He J, Zhang X (2020) miR-668 inhibitor attenuates mitochondrial membrane potential and protects against neuronal apoptosis in cerebral ischemic stroke. Folia Neuropathol 58(1):22–29. https://doi.org/10.5114/fn.2020.94003

    Article  PubMed  Google Scholar 

  96. Sayed ASM, Xia K, Li F et al (2015) The diagnostic value of circulating microRNAs for middle-aged (40–60-year-old) coronary artery disease patients. Clinics (Sao Paulo) 70(4):257–263. https://doi.org/10.6061/clinics/2015(04)07

    Article  PubMed  Google Scholar 

  97. Wan Y, Jin HJ, Zhu YY et al (2018) MicroRNA-149-5p regulates blood-brain barrier permeability after transient middle cerebral artery occlusion in rats by targeting S1PR2 of pericytes. Faseb J 32(6):3133–3148. https://doi.org/10.1096/fj.201701121R

    Article  CAS  PubMed  Google Scholar 

  98. Ma X, Yun HJ, Elkin K et al (2022) MicroRNA-29b suppresses inflammation and protects blood-brain barrier integrity in ischemic stroke. Mediators Inflamm 2022:1–11. https://doi.org/10.1155/2022/1755416

    Article  CAS  Google Scholar 

  99. Wang Y, Huang J, Ma Y et al (2015) MicroRNA-29b is a therapeutic target in cerebral ischemia associated with aquaporin 4. J Cereb Blood Flow Metab 35(12):1977–1984. https://doi.org/10.1038/jcbfm.2015.156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Fang Z, He QW, Li Q et al (2016) MicroRNA-150 regulates blood-brain barrier permeability via Tie-2 after permanent middle cerebral artery occlusion in rats. FASEB J 30(6):2097–2107. https://doi.org/10.1096/fj.201500126

    Article  CAS  PubMed  Google Scholar 

  101. Wu Y, Gao Z, Zhang J (2020) <p>Transcription Factor E2F1 aggravates neurological injury in ischemic stroke via microRNA-122-targeted sprouty2</p&gt. Neuropsychiatr Dis Treat 16:2633–2647. https://doi.org/10.2147/ndt.s271320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wang M, Liu X, Wu Y et al (2021) ΜicroRNA-122 protects against ischemic stroke by targeting Maf1. Exp Ther Med. https://doi.org/10.3892/etm.2021.10048

    Article  PubMed  PubMed Central  Google Scholar 

  103. Pfeiffer S, Tomašcová A, Mamrak U et al (2021) AMPK-regulated miRNA-210-3p is activated during ischaemic neuronal injury and modulates PI3K-p70S6K signalling. J Neurochem 159(4):710–728. https://doi.org/10.1111/jnc.15347

    Article  CAS  PubMed  Google Scholar 

  104. Liang C, Ni G-X, Shi X-L et al (2020) Astragaloside IV regulates the HIF/VEGF/Notch signaling pathway through miRNA-210 to promote angiogenesis after ischemic stroke. Restor Neurol Neurosci 38(3):271–282. https://doi.org/10.3233/RNN-201001

    Article  CAS  PubMed  Google Scholar 

  105. Deng X, Zhong Y, Gu L et al (2013) MiR-21 involve in ERK-mediated upregulation of MMP9 in the rat hippocampus following cerebral ischemia. Brain Res Bull 94:56–62. https://doi.org/10.1016/j.brainresbull.2013.02.007

    Article  CAS  PubMed  Google Scholar 

  106. Zhai K, Duan H, Wang W et al (2021) Ginsenoside Rg1 ameliorates blood–brain barrier disruption and traumatic brain injury via attenuating macrophages derived exosomes miR-21 release. Acta Pharmaceutica Sinica B 11(11):3493–3507. https://doi.org/10.1016/j.apsb.2021.03.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Fan F, Yang J, Xu Y et al (2018) MiR-539 targets MMP-9 to regulate the permeability of blood-brain barrier in ischemia/reperfusion injury of brain. Neurochem Res 43(12):2260–2267. https://doi.org/10.1007/s11064-018-2646-0

    Article  CAS  PubMed  Google Scholar 

  108. Suofu Y, Wang X, He Y et al (2020) Mir-155 knockout protects against ischemia/reperfusion-induced brain injury and hemorrhagic transformation. NeuroReport 31(3):235–239. https://doi.org/10.1007/s12975-020-00794-0

    Article  CAS  PubMed  Google Scholar 

  109. Talebi A, Rahnema M, Bigdeli MR (2019) Effect of intravenous injection of antagomiR-1 on brain ischemia. Mol Biol Rep 46(1):1149–1155. https://doi.org/10.1007/s11033-018-04580-y

    Article  CAS  PubMed  Google Scholar 

  110. Zhang H, Pan Q, Xie Z et al (2020) Implication of MicroRNA503 in brain endothelial cell function and ischemic stroke. Transl Stroke Res 11(5):1148–1164. https://doi.org/10.1007/s12975-020-00794-0

    Article  CAS  PubMed  Google Scholar 

  111. Zhou B, Liu H-Y, Zhu B-L et al (2019) MicroRNA-141 protects PC12 cells against hypoxia/reoxygenation-induced injury via regulating Keap1-Nrf2 signaling pathway. J Bioenerg Biomembr 51(4):291–300. https://doi.org/10.1007/s10863-019-09804-9

    Article  CAS  PubMed  Google Scholar 

  112. Guerra BS, Lima J, Araujo B et al (2021) Biogenesis of circular RNAs and their role in cellular and molecular phenotypes of neurological disorders. Semin Cell Dev Biol 114:1–10. https://doi.org/10.1016/j.semcdb.2020.08.003

    Article  CAS  PubMed  Google Scholar 

  113. Panda AC (2018) Circular RNAs act as miRNA sponges. Circular RNAs: biogenesis and functions. Springer, Singapore, pp 67–79

    Google Scholar 

  114. Yang T, Li Y, Zhao F et al (2021) Circular RNA Foxo3: a promising cancer-associated biomarker. Front Genet 12:652995. https://doi.org/10.3389/fgene.2021.652995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Yang Z, Huang C, Wen X et al (2021) Circular RNA circ-FoxO3 attenuates blood-brain barrier damage by inducing autophagy during ischemia/reperfusion. Mol Ther. https://doi.org/10.1016/j.ymthe.2021.11.004

    Article  PubMed  PubMed Central  Google Scholar 

  116. Quinn JJ, Chang HY (2016) Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet 17(1):47–62. https://doi.org/10.1038/nrg.2015.10

    Article  CAS  PubMed  Google Scholar 

  117. Sa L, Li Y, Zhao L et al (2017) The role of HOTAIR/miR-148b-3p/USF1 on regulating the permeability of BTB. Front Mol Neurosci 10:194. https://doi.org/10.3389/fnmol.2017.00194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Wang C, Dong J, Sun J et al (2021) Silencing of lncRNA XIST impairs angiogenesis and exacerbates cerebral vascular injury after ischemic stroke. Molecular Therapy-Nucleic Acids 26:148–160. https://doi.org/10.1016/j.omtn.2021.06.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Wang J, Cao B, Sun R et al (2022) Exosome-transported long non-coding ribonucleic acid H19 induces blood–brain barrier disruption in cerebral ischemic stroke Via the H19/micro ribonucleic acid-18a/vascular endothelial growth factor axis. Neuroscience 500:41–51. https://doi.org/10.1016/j.neuroscience.2022.07.028

    Article  CAS  PubMed  Google Scholar 

  120. Li Z, Li J, Tang N (2017) Long noncoding RNA Malat1 is a potent autophagy inducer protecting brain microvascular endothelial cells against oxygen-glucose deprivation/reoxygenation-induced injury by sponging miR-26b and upregulating ULK2 expression. Neuroscience 354:1–10. https://doi.org/10.1016/j.neuroscience.2017.04.017

    Article  CAS  PubMed  Google Scholar 

  121. You D, You H (2019) Repression of long non-coding RNA MEG3 restores nerve growth and alleviates neurological impairment after cerebral ischemia-reperfusion injury in a rat model. Biomed Pharmacother 111:1447–1457. https://doi.org/10.1016/j.biopha.2018.12.067

    Article  CAS  PubMed  Google Scholar 

  122. Wang S, Liang K, Hu Q et al (2017) JAK2-binding long noncoding RNA promotes breast cancer brain metastasis. J Clin Investig 127(12):4498–4515. https://doi.org/10.1016/j.dib.2020.106260

    Article  PubMed  PubMed Central  Google Scholar 

  123. Zhang X, Li Y, Sun Y et al (2020) Regulatory effect of heat shock transcription factor-1 gene on heat shock proteins and its transcriptional regulation analysis in small abalone Haliotis diversicolor. BMC Mol Cell Biol 21:1–12. https://doi.org/10.1186/s12860-020-00323-9

    Article  CAS  Google Scholar 

  124. Li F, Yang B, Li T et al (2019) HSPB8 over-expression prevents disruption of blood-brain barrier by promoting autophagic flux after cerebral ischemia/reperfusion injury. J Neurochem 148(1):97–113. https://doi.org/10.1111/jnc.14626

    Article  CAS  PubMed  Google Scholar 

  125. Li F, Tan J, Zhou F et al (2018) Heat shock protein B8 (HSPB8) reduces oxygen-glucose deprivation/reperfusion injury via the induction of mitophagy. Cell Physiol Biochem 48(4):1492–1504. https://doi.org/10.1159/000492259

    Article  CAS  PubMed  Google Scholar 

  126. Jiang Y, He R, Shi Y et al (2020) Plasma exosomes protect against cerebral ischemia/reperfusion injury via exosomal HSP70 mediated suppression of ROS. Life Sci 256:117987. https://doi.org/10.1016/j.lfs.2020.117987

    Article  CAS  PubMed  Google Scholar 

  127. Li F, Gong X, Yang B (2021) Geranylgeranylacetone ameliorated ischemia/reperfusion induced-blood brain barrier breakdown through HSP70-dependent anti-apoptosis effect. Am J Transl Res 13(1):102–114

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Yang D, Ma L, Wang P et al (2019) Normobaric oxygen inhibits AQP4 and NHE1 expression in experimental focal ischemic stroke. Int J Mol Med 43(3):1193–1202. https://doi.org/10.3892/ijmm.2018.4037

    Article  CAS  PubMed  Google Scholar 

  129. Pignataro G, Tortiglione A, Scorziello A et al (2004) Evidence for a protective role played by the Na+/Ca2+ exchanger in cerebral ischemia induced by middle cerebral artery occlusion in male rats. Neuropharmacology 46(3):439–448. https://doi.org/10.1016/j.neuropharm.2003.09.015

    Article  CAS  PubMed  Google Scholar 

  130. Jia M, Zhang Q, Guo X et al (2022) Na+/HCO3-co-transporters inhibitor S0859 attenuates global cerebral ischemia-reperfusion injury of the CA1 neurons in the Gerbil’s hippocampus. CNS Neurol Disord. https://doi.org/10.1016/j.neuropharm.2003.09.015

    Article  Google Scholar 

  131. Xue J, Zhou D, Yao H et al (2008) Role of transporters and ion channels in neuronal injury under hypoxia. Am J Physiol Regul Integr Comp Physiol 294(2):R451–R457. https://doi.org/10.1152/ajpregu.00528.2007

    Article  CAS  PubMed  Google Scholar 

  132. Rose CR, Karus C (2013) Two sides of the same coin: sodium homeostasis and signaling in astrocytes under physiological and pathophysiological conditions. Glia 61(8):1191–1205. https://doi.org/10.1002/glia.22492

    Article  PubMed  Google Scholar 

  133. Begum G, Song S, Wang S et al (2018) Selective knockout of astrocytic Na+/H+ exchanger isoform 1 reduces astrogliosis, BBB damage, infarction, and improves neurological function after ischemic stroke. Glia 66(1):126–144. https://doi.org/10.1002/glia.23232

    Article  PubMed  Google Scholar 

  134. Luo J, Chen H, Kintner DB et al (2005) Decreased neuronal death in Na+/H+ exchanger isoform 1-null mice after in vitro and in vivo ischemia. J Neurosci 25(49):11256–11268. https://doi.org/10.1523/JNEUROSCI.3271-05.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Song S, Huang H, Guan X et al (2021) Activation of endothelial Wnt/β-catenin signaling by protective astrocytes repairs BBB damage in ischemic stroke. Prog Neurobiol 199:101963. https://doi.org/10.1016/j.pneurobio.2020.101963

    Article  CAS  PubMed  Google Scholar 

  136. Luo H, Gauthier M, Tan X et al (2018) Sodium transporters are involved in lithium influx in brain endothelial cells. Mol Pharm 15(7):2528–2538. https://doi.org/10.1021/acs.molpharmaceut.8b00018

    Article  CAS  PubMed  Google Scholar 

  137. Quednau BD, Nicoll D, Philipson KD (1997) Tissue specificity and alternative splicing of the Na+/Ca2+ exchanger isoforms NCX1, NCX2, and NCX3 in rat. Am J Physiol Cell Physiol 272(4):C1250–C1261. https://doi.org/10.1152/ajpcell.1997.272.4.C1250

    Article  CAS  Google Scholar 

  138. Canitano A, Papa M, Boscia F et al (2002) Brain distribution of the Na+/Ca2+ exchanger-encoding genes NCX1, NCX2, and NCX3 and their related proteins in the central nervous system. Ann NY Acad Sci 976(1):394–404. https://doi.org/10.1111/j.1749-6632.2002.tb04766.x

    Article  CAS  PubMed  Google Scholar 

  139. Boscia F, Gala R, Pignataro G et al (2006) Permanent focal brain ischemia induces isoform-dependent changes in the pattern of Na+/Ca2+ exchanger gene expression in the ischemic core, periinfarct area, and intact brain regions. J Cereb Blood Flow Metab 26(4):502–517. https://doi.org/10.1038/sj.jcbfm.9600207

    Article  CAS  PubMed  Google Scholar 

  140. Cerullo P, Brancaccio P, Anzilotti S et al (2018) Acute and long-term NCX activation reduces brain injury and restores behavioral functions in mice subjected to neonatal brain ischemia. Neuropharmacology 135:180–191. https://doi.org/10.1016/j.neuropharm.2018.03.017

    Article  CAS  PubMed  Google Scholar 

  141. Propson NE, Roy ER, Litvinchuk A et al (2021) Endothelial C3a receptor mediates vascular inflammation and blood-brain barrier permeability during aging. J Clin Invest. https://doi.org/10.1172/JCI140966

    Article  PubMed  PubMed Central  Google Scholar 

  142. Theparambil SM, Hosford PS, Ruminot I et al (2020) Astrocytes regulate brain extracellular pH via a neuronal activity-dependent bicarbonate shuttle. Nat Commun 11(1):5073. https://doi.org/10.1038/s41467-020-18756-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Du L, Zahra A, Jia M et al (2021) Understanding the functional expression of Na+-Coupled SLC4 transporters in the renal and nervous systems: a review. Brain Sci. https://doi.org/10.3390/brainsci11101276

    Article  PubMed  PubMed Central  Google Scholar 

  144. Sohn Y, Yoo K-Y, Park OK et al (2011) Na+/HCO3− cotransporter immunoreactivity changes in neurons and expresses in astrocytes in the gerbil hippocampal CA1 region after ischemia/reperfusion. Neurochem Res 36(12):2459–2469. https://doi.org/10.1007/s11064-011-0572-5

    Article  CAS  PubMed  Google Scholar 

  145. Yao H, Azad P, Zhao HW et al (2016) The Na+/HCO3− co-transporter is protective during ischemia in astrocytes. Neuroscience 339:329–337. https://doi.org/10.1016/j.neuroscience.2016.09.050

    Article  CAS  PubMed  Google Scholar 

  146. Tavender TJ, Bulleid NJ (2010) Peroxiredoxin IV protects cells from oxidative stress by removing H2O2 produced during disulphide formation. J Cell Sci 123(Pt 15):2672–2679. https://doi.org/10.1242/jcs.067843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Okado-Matsumoto A, Matsumoto A, Fujii J et al (2000) Peroxiredoxin IV is a secretable protein with heparin-binding properties under reduced conditions1. J Biochem 127(3):493–501. https://doi.org/10.1093/oxfordjournals.jbchem.a022632

    Article  CAS  PubMed  Google Scholar 

  148. Ouyang T, Meng W, Li M et al (2020) Recent advances of the Hippo/YAP signaling pathway in brain development and glioma. Cell Mol Neurobiol 40(4):495–510. https://doi.org/10.1007/s10571-019-00762-9

    Article  CAS  PubMed  Google Scholar 

  149. Gong S, Ma H, Zheng F et al (2021) Inhibiting YAP in endothelial cells from entering the nucleus attenuates blood-brain barrier damage during ischemia-reperfusion injury. Front Pharmacol 12:777680. https://doi.org/10.3389/fphar.2021.777680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Yuan J, Li L, Yang Q et al (2021) Targeted treatment of ischemic stroke by bioactive nanoparticle-derived reactive oxygen species responsive and inflammation-resolving nanotherapies. ACS Nano 15(10):16076–16094. https://doi.org/10.1021/acsnano.1c04753

    Article  CAS  PubMed  Google Scholar 

  151. Liu M, Xu Z, Wang L et al (2020) Cottonseed oil alleviates ischemic stroke injury by inhibiting the inflammatory activation of microglia and astrocyte. J Neuroinflamm 17(1):1–15. https://doi.org/10.1186/s12974-020-01946-7

    Article  CAS  Google Scholar 

  152. Ji Y, Gao Q, Ma Y et al (2023) An MMP-9 exclusive neutralizing antibody attenuates blood-brain barrier breakdown in mice with stroke and stroke patient-derived MMP-9 activity. Pharmacol Res. https://doi.org/10.1016/j.phrs.2023.106720

    Article  PubMed  Google Scholar 

  153. Li Y, Zhang M, Li S et al (2023) Selective ischemic-hemisphere targeting Ginkgolide B liposomes with improved solubility and therapeutic efficacy for cerebral ischemia-reperfusion injury. Asian J Pharmaceut Sci. https://doi.org/10.1016/j.ajps.2023.100783

    Article  Google Scholar 

  154. Long Y, Liu S, Wan J et al (2023) Brain targeted borneol-baicalin liposome improves blood-brain barrier integrity after cerebral ischemia-reperfusion injury via inhibiting HIF-1α/VEGF/eNOS/NO signal pathway. Biomed Pharmacother 160:114240. https://doi.org/10.1016/j.biopha.2023.114240

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from the Natural Science Foundation of Beijing (7214224, M.J), the National Natural Science Foundation of China (81870935, J.W) and the Scientific Research Found of Wuhan University of Technology (40122070, J.W).

Author information

Authors and Affiliations

Authors

Contributions

XG conducted the literature review and wrote the initial draft of the manuscript. RL gave important advice on the content of the review. MJ and QW checked the grammar of the review. JW made critical revisions and approved the final version of the manuscript. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Jianping Wu.

Ethics declarations

Conflict of interest

There are no competing financial interests for any of the authors concerning the work described.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, X., Liu, R., Jia, M. et al. Ischemia Reperfusion Injury Induced Blood Brain Barrier Dysfunction and the Involved Molecular Mechanism. Neurochem Res 48, 2320–2334 (2023). https://doi.org/10.1007/s11064-023-03923-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-023-03923-x

Keywords

Navigation