Skip to main content
Log in

Prenatal Hypoxia-Induced Adverse Reaction to Mild Stress is Associated with Depressive-Like Changes in the Glucocorticoid System of Rats

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The effects of prenatal hypoxia on neurodevelopment are predominantly associated with impaired maternal glucocorticoid stimulation of the fetus, which is "imprinted" in altered sensitivity of glucocorticoid reception in brain structures of offspring and can affect brain plasticity during lifespan. This study aimed to investigate response of the brain glucocorticoid system to mild stress (MS) in adult rats that survived prenatal severe hypoxia (PSH) on embryonic days 14-16. In response to MS the control (but not PSH) rats demonstrate increased corticosterone levels, a decrease in exploratory activity and increased anxiety. In the raphe nuclei of adult PSH rats the expression of glucocorticoid receptors (GR) is increased without changes in serotonin levels in comparison with the control. MS induces a decrease in GR expression accompanied by up-regulation of tryptophan hydroxylase 2 (tph2) and down-regulation of monoamine oxidase A (maoa) transcription in the raphe nuclei of both control and PSH groups. PSH also causes significant deviations in GR expression and GR-dependent transcription in the hippocampus, the medial prefrontal cortex, but not in the amygdala of rats. However, in response to MS, PSH rats demonstrate mild changes in their activity, while in control animals the MS-induced activity of the glucocorticoid system in these brain structures is similar to intact PSH animals. Impaired activity of the glucocorticoid system in the extrahypothalamic brain structures of PSH rats is accompanied by increase in the hypothalamic corticotropin-releasing hormone (CRH) levels in comparison with the control regardless of MS. Synthesis of proopiomelanocortin (POMC) and release of adrenocorticotropic hormone (ACTH) into the blood are decreased in response to MS in the pituitary of control rats, which demonstrates a negative glucocorticoid feedback mechanism. Meanwhile, in the pituitary of PSH rats reduced POMC levels were found regardless of MS. Thus, prenatal hypoxia causes depression-like patterns in the brain glucocorticoid system with adverse reaction to mild stressors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Abbreviations

ACTH:

Adrenocorticotropic hormone

AMG:

Amygdala

CHRNA7:

Cholinergic receptor nicotinic alpha 7 Subunit

CRH:

Corticotropin-releasing hormone

CRHR1:

Corticotropin-releasing hormone receptor 1

GR (NR3C1):

Glucocorticoid receptor (nuclear receptor subfamily 3, group C, member 1)

CS:

Corticosterone

HPAA:

Hypothalamic–pituitary–adrenal axis

HPC:

Hippocampus

HT:

Hypothalamus

MAOA:

Monoamine oxidase A

MS:

Mild stress

PFC:

Prefrontal cortex (medial)

POMC:

Proopiomelanocortin

PSH:

Prenatal severe hypoxia

PT:

Pituitary

RN:

Raphe nuclei (dorsal)

TPH2:

Tryptophan hydroxylase 2

References

  1. Busada JT, Cidlowski JA (2017) Mechanisms of glucocorticoid action during development. Curr Top Dev Biol 125:147–170. https://doi.org/10.1016/bs.ctdb.2016.12.004

    Article  CAS  PubMed  Google Scholar 

  2. Viho EMG, Buurstede JC, Mahfouz A et al (2019) Corticosteroid action in the brain: the potential of selective receptor modulation. Neuroendocrinology 109:266–276. https://doi.org/10.1159/000499659

    Article  CAS  PubMed  Google Scholar 

  3. de Kloet ER, Joëls M, Holsboer F (2005) Stress and the brain: from adaptation to disease. Nature Rev Neurosci 6:463–465. https://doi.org/10.1038/nrn1683

    Article  CAS  Google Scholar 

  4. de Kloet ER, Karst H, Joëls M (2008) Corticosteroid hormones in the central stress response: quick-and-slow. Front Neuroendocrinol 29:268–272. https://doi.org/10.1016/j.yfrne.2007.10.002

    Article  CAS  PubMed  Google Scholar 

  5. Champagne DL, Ronald de Kloet E, Joëls M (2009) Fundamental aspects of the impact of glucocorticoids on the (immature) brain. Semin Fetal Neonatal Med 14:136–142. https://doi.org/10.1016/j.siny.2008.11.006

    Article  PubMed  Google Scholar 

  6. Tomalski P, Johnson MH (2010) The effects of early adversity on the adult and developing brain. Curr Opin Psychiatry 23:233–238. https://doi.org/10.1097/YCO.0b013e3283387a8c

    Article  PubMed  Google Scholar 

  7. Fowden AL, Valenzuela OA, Vaughan OR et al (2016) Glucocorticoid programming of intrauterine development. Domest Anim Endocrinol 56:S121-132. https://doi.org/10.1016/j.domaniend.2016.02.014

    Article  CAS  PubMed  Google Scholar 

  8. Lee BH, Wen TC, Rogido M, Sola A (2007) Glucocorticoid receptor expression in the cortex of the neonatal rat brain with and without focal cerebral ischemia. Neonatology 91:12–19. https://doi.org/10.1159/000096966

    Article  CAS  PubMed  Google Scholar 

  9. Seckl JR, Holmes MC (2007) Mechanisms of Disease: glucocorticoids, their placental metabolism and fetal “programming” of adult pathophysiology. Nat Clin Pract Endocrinol Metabol 3:479–488. https://doi.org/10.1038/ncpendmet0515

    Article  CAS  Google Scholar 

  10. Glover V, O’Donnell KJ, O’Connor TG, Fisher J (2018) Prenatal maternal stress, fetal programming, and mechanisms underlying later psychopathology—A global perspective. Dev Psychopathol 30:843–854. https://doi.org/10.1017/S095457941800038X

    Article  PubMed  Google Scholar 

  11. Togher KL, Togher KL, O’Keeffe MM et al (2014) Epigenetic regulation of the placental HSD11B2 barrier and its role as a critical regulator of fetal development. Epigenetics 9:816–822. https://doi.org/10.4161/epi.28703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shearer FJG, Wyrwoll CS, Holmes MC (2019) The Role of 11β-hydroxy steroid dehydrogenase type 2 in glucocorticoid programming of affective and cognitive behaviours. Neuroendocrinology 109:257–265. https://doi.org/10.1159/000499660_rfseq1

    Article  CAS  PubMed  Google Scholar 

  13. Zafer D, Aycan N, Ozaydin B et al (2019) Sex differences in hippocampal memory and learning following neonatal brain injury: is there a role for estrogen receptor-α? Neuroendocrinology 109:249–256. https://doi.org/10.1159/000499661

    Article  CAS  PubMed  Google Scholar 

  14. Provençal N, Arloth J, Cattaneo A et al (2020) Glucocorticoid exposure during hippocampal neurogenesis primes future stress response by inducing changes in DNA methylation. Proc Natl Acad Sci U S A 117:23280–23285. https://doi.org/10.1073/pnas.1820842116

    Article  CAS  PubMed  Google Scholar 

  15. Prevot V, Millar RP (2019) New developments in reproductive and stress neuroendocrinology. Neuroendocrinology 109:191–192. https://doi.org/10.1159/000502420

    Article  CAS  PubMed  Google Scholar 

  16. Xiong F, Zhang L (2013) Role of the hypothalamic–pituitary–adrenal axis in developmental programming of health and disease. Front Neuroendocrinol 34:27–46. https://doi.org/10.1016/j.yfrne.2012.11.002

    Article  CAS  PubMed  Google Scholar 

  17. Weaver ICG (2005) Reversal of maternal programming of stress responses in adult offspring through methyl supplementation: altering epigenetic marking later in life. J Neurosci 25:11045–11054. https://doi.org/10.1523/JNEUROSCI.3652-05.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Weaver ICG, D’Alessio AC, Brown SE et al (2007) The transcription factor nerve growth factor-inducible protein a mediates epigenetic programming: Altering epigenetic marks by immediate-early genes. J Neurosci 27:1756–1768. https://doi.org/10.1523/JNEUROSCI.4164-06.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mueller BR, Bale TL (2008) Sex-specific programming of offspring emotionality after stress early in pregnancy. J Neurosci 28:9055–9065. https://doi.org/10.1523/JNEUROSCI.1424-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Oberlander TF, Weinberg J, Papsdorf M et al (2008) Prenatal exposure to maternal depression, neonatal methylation of human glucocorticoid receptor gene (NR3C1) and infant cortisol stress responses. Epigenetics 3:97–106. https://doi.org/10.4161/epi.3.2.6034

    Article  PubMed  Google Scholar 

  21. Turner JD, Pelascini LPL, Macedo JA, Muller CP (2008) Highly individual methylation patterns of alternative glucocorticoid receptor promoters suggest individualized epigenetic regulatory mechanisms. Nucleic Acids Res 36:7207–7218. https://doi.org/10.1093/nar/gkn897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Turner JD, Alt SR, Cao L et al (2010) Transcriptional control of the glucocorticoid receptor: CpG islands, epigenetics and more. Biochem Pharmacol 80:1860–1868. https://doi.org/10.1016/j.bcp.2010.06.037

    Article  CAS  PubMed  Google Scholar 

  23. Gonzalez-Rodriguez PJ, Xiong F, Li Y et al (2014) Fetal hypoxia increases vulnerability of hypoxic–ischemic brain injury in neonatal rats: Role of glucocorticoid receptors. Neurobiol Dis 65:172–179. https://doi.org/10.1016/j.nbd.2014.01.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vetrovoy O, Tyulkova E, Stratilov V et al (2021) Long-term effects of prenatal severe hypoxia on central and peripheral components of the glucocorticoid system in rats. Dev Neurosci 42:145–158. https://doi.org/10.1159/000512223

    Article  CAS  Google Scholar 

  25. Warner MJ, Ozanne SE (2010) Mechanisms involved in the developmental programming of adulthood disease. Biochemi J 427:333–347. https://doi.org/10.1042/BJ20091861

    Article  CAS  Google Scholar 

  26. Langley-Evans SC, McMullen S (2010) Developmental origins of adult disease. Med Princ Pract 19:87–98. https://doi.org/10.1159/000273066

    Article  PubMed  Google Scholar 

  27. Dudley KJ, Li X, Kobor MS et al (2011) Epigenetic mechanisms mediating vulnerability and resilience to psychiatric disorders. Neurosci Biobehav 35:1544–1551. https://doi.org/10.1016/j.neubiorev.2010.12.016

    Article  Google Scholar 

  28. Golan H, Huleihel M (2006) The effect of prenatal hypoxia on brain development: short- and long-term consequences demonstrated in rodent models. Dev Sci 9:338–349. https://doi.org/10.1111/j.1467-7687.2006.00498.x

    Article  PubMed  Google Scholar 

  29. Graham EM, Ruis KA, Hartman AL et al (2008) A systematic review of the role of intrapartum hypoxia-ischemia in the causation of neonatal encephalopathy. Am J Obstet Gynecol 199:587–595. https://doi.org/10.1016/j.ajog.2008.06.094

    Article  CAS  PubMed  Google Scholar 

  30. Kurinczuk JJ, White-Koning M, Badawi N (2010) Epidemiology of neonatal encephalopathy and hypoxic–ischaemic encephalopathy. Early Hum Dev 86:329–338. https://doi.org/10.1016/j.earlhumdev.2010.05.010

    Article  PubMed  Google Scholar 

  31. Kilkenny C, Browne WJ, Cuthill IC et al (2010) Improving bioscience research reporting: the arrive guidelines for reporting animal research. PLoS Biol. https://doi.org/10.1371/journal.pbio.1000412

    Article  PubMed  PubMed Central  Google Scholar 

  32. Vetrovoy O, Stratilov V, Nimiritsky P et al (2021) Prenatal hypoxia induces premature aging accompanied by impaired function of the glutamatergic system in rat hippocampus. Neurochem Res 46:550–563. https://doi.org/10.1007/s11064-020-03191-z

    Article  CAS  PubMed  Google Scholar 

  33. Kuo T, McQueen A, Chen TC, Wang JC (2015) Regulation of glucose homeostasis by glucocorticoids. Adv Exp Med Biol 872:99–126. https://doi.org/10.1007/978-1-4939-2895-8_5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Magomedova L, Cummins CL (2015) Glucocorticoids and metabolic control. Handb Exp Pharmacol 233:73–93. https://doi.org/10.1007/164_2015_1

    Article  CAS  Google Scholar 

  35. Cain DW, Cidlowski JA (2017) Immune regulation by glucocorticoids. Nat Rev Immunol 17:233–247. https://doi.org/10.1038/nri.2017.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jaszczyk A, Juszczak GR (2021) Glucocorticoids, metabolism and brain activity. Neurosci Biobehav Rev 126:113–145. https://doi.org/10.1016/j.neubiorev.2021.03.007

    Article  CAS  PubMed  Google Scholar 

  37. Odaka H, Adachi N, Numakawa T (2017) Impact of glucocorticoid on neurogenesis. Neural Regen Res 12:1028–1035. https://doi.org/10.4103/1673-5374.211174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lucassen PJ, Pruessner J, Sousa N et al (2014) Neuropathology of stress. Acta Neuropathol 127:109–135. https://doi.org/10.1007/s00401-013-1223-5

    Article  CAS  PubMed  Google Scholar 

  39. Lightman SL (2008) The neuroendocrinology of stress: a never ending story. J Neuroendocrinol 20:880–884. https://doi.org/10.1111/j.1365-2826.2008.01711.x

    Article  CAS  PubMed  Google Scholar 

  40. Koehl M, Darnaudéry M, Dulluc J et al (1999) Prenatal stress alters circadian activity of hypothalamo-pituitary- adrenal axis and hippocampal corticosteroid receptors in adult rats of both gender. J Neurobiol 40:302–315. https://doi.org/10.1002/(SICI)1097-4695(19990905)40:3%3c302::AID-NEU3%3e3.0.CO;2-7

    Article  CAS  PubMed  Google Scholar 

  41. Nestler EJ, Barrot M, DiLeone RJ et al (2002) Neurobiology of depression. Neuron 34:13–25. https://doi.org/10.1016/s0896-6273(02)00653-0

    Article  CAS  PubMed  Google Scholar 

  42. Zunszain PA, Anacker C, Cattaneo A et al (2011) Glucocorticoids, cytokines and brain abnormalities in depression. Prog Neuropsychopharmacol Biol Psychiatry 35:722–729. https://doi.org/10.1016/j.pnpbp.2010.04.011

    Article  CAS  PubMed  Google Scholar 

  43. Huang KW, Ochandarena NE, Philson AC et al (2019) Molecular and anatomical organization of the dorsal raphe nucleus. Elife. https://doi.org/10.7554/eLife.46464

    Article  PubMed  PubMed Central  Google Scholar 

  44. Juneja A, Barenboim L, Jacobson L (2020) Selective effects of dorsal raphé nucleus glucocorticoid receptor deletion on depression-like behavior in female C57BL/6J mice. Neurosci Lett. https://doi.org/10.1016/j.neulet.2019.134697

    Article  PubMed  Google Scholar 

  45. Espallergues J, Teegarden SL, Veerakumar A et al (2012) HDAC6 regulates glucocorticoid receptor signaling in serotonin pathways with critical impact on stress resilience. J Neurosci 32:4400–4416. https://doi.org/10.1523/JNEUROSCI.5634-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Vincent MY, Jacobson L (2014) Glucocorticoid receptor deletion from the dorsal raphé nucleus of mice reduces dysphoria-like behavior and impairs hypothalamic-pituitary-adrenocortical axis feedback inhibition. Eur J Neurosci 39:1671–1681. https://doi.org/10.1111/ejn.12538

    Article  PubMed  PubMed Central  Google Scholar 

  47. Barton DA, Esler MD, Dawood T et al (2008) Elevated brain serotonin turnover in patients with depression: effect of genotype and therapy. Arch Gen Psychiatry 65:38–46. https://doi.org/10.1001/archgenpsychiatry.2007.11

    Article  CAS  PubMed  Google Scholar 

  48. Herman JP, Mcklveen JM, Solomon MB et al (2012) Neural regulation of the stress response: glucocorticoid feedback mechanisms. Braz J Med Biol Res 45:292–298. https://doi.org/10.1590/S0100-879X2012007500041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jankord R, Herman JP (2008) Limbic regulation of hypothalamo-pituitary-adrenocortical function during acute and chronic stress. Ann N Y Acad Sci 1148:64–73. https://doi.org/10.1196/annals.1410.012

    Article  PubMed  PubMed Central  Google Scholar 

  50. McKlveen JM, Myers B, Flak JN et al (2013) Role of prefrontal cortex glucocorticoid receptors in stress and emotion. Biol Psychiatry 74:672–679. https://doi.org/10.1016/j.biopsych.2013.03.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kolber BJ, Roberts MS, Howell MP et al (2008) Central amygdala glucocorticoid receptor action promotes fear-associated CRH activation and conditioning. Proc Natl Acad Sci U S A 105:12004–12009. https://doi.org/10.1073/pnas.0803216105

    Article  PubMed  PubMed Central  Google Scholar 

  52. Pariante CM, Miller AH (2001) Glucocorticoid receptors in major depression: Relevance to pathophysiology and treatment. Biol Psychiat 49:391–404. https://doi.org/10.1016/s0006-3223(00)01088-x

    Article  CAS  PubMed  Google Scholar 

  53. Nemeroff CB, Owens MJ (2002) Treatment of mood disorders. Nat Neurosci 5:1068–1070. https://doi.org/10.1038/nn943

    Article  CAS  PubMed  Google Scholar 

  54. Braida D, Ponzoni L, Martucci R et al (2014) Role of neuronal nicotinic acetylcholine receptors (nAChRs) on learning and memory in zebrafish. Psychopharmacology 231:1972–1985. https://doi.org/10.1007/s00213-013-3340-1

    Article  CAS  Google Scholar 

  55. Douma EH, de Kloet ER (2020) Stress-induced plasticity and functioning of ventral tegmental dopamine neurons. Neurosci Biobehav Rev 108:48–77. https://doi.org/10.1016/j.neubiorev.2019.10.015

    Article  CAS  PubMed  Google Scholar 

  56. Stratilov VA, Vetrovoy OV, Tyulkova EI (2022) Prenatal hypoxia affects nicotine consumption and withdrawal in adult rats via impairment of the glutamate system in the brain. Mol Neurobio 59:4550–4561. https://doi.org/10.1007/s12035-022-02866-8

    Article  CAS  Google Scholar 

  57. Hubbard DT, Nakashima BR, Lee I, Takahashi LK (2007) Activation of basolateral amygdala corticotropin-releasing factor 1 receptors modulates the consolidation of contextual fear. Neuroscience 150:118–828. https://doi.org/10.1016/j.neuroscience.2007.10.001

    Article  CAS  Google Scholar 

  58. Drouin J, Trifiro MA, Plante RK et al (1989) Glucocorticoid receptor binding to a specific DNA sequence is required for hormone-dependent repression of pro-opiomelanocortin gene transcription. Mol Cell Biol 9:5305–5314. https://doi.org/10.1128/mcb.9.12.5305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Reiter MH, Vila G, Knosp E et al (2011) Opposite effects of serum- and glucocorticoid-regulated kinase-1 and glucocorticoids on POMC transcription and ACTH release. Am J Physiol Endocrinol Metab 301:E336-341. https://doi.org/10.1152/ajpendo.00155.2011

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

iBright™ FL1500 Imaging System was kindly provided by Scientific Park of the Russian department of the Thermo Scientific Company. The authors are deeply grateful to Mrs. Elena Axenova for her excellent technical assistance in experiments on animal models.

Funding

The work has been supported by the Ministry of Education and Science of the Russian Federation (Agreement no. 075-15-2020-921 of 13.11.2020) in the framework of the Project of World-class research center Pavlov Center “Integrative Physiology to Medicine, High-Tech Healthcare and Technologies of Stress Resistance”, section “Biological and Social Basis of Inclusion”. OV received support from the Russian Science Foundation, grant No. 22-75-00003 (RT PCR experiments).

Author information

Authors and Affiliations

Authors

Contributions

OV—designed experiments; OV, VS, EL, ET—performed experiments; OV, VS—analyzed data; OV, VS, ET—wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Oleg Vetrovoy.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethics Approval

Animal experiments were carried out according to The Guidelines for Reporting Animal Research [31]. Experimental protocols were approved by the local ethical committee at the Pavlov Institute of Physiology.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1080 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vetrovoy, O., Stratilov, V., Lomert, E. et al. Prenatal Hypoxia-Induced Adverse Reaction to Mild Stress is Associated with Depressive-Like Changes in the Glucocorticoid System of Rats. Neurochem Res 48, 1455–1467 (2023). https://doi.org/10.1007/s11064-022-03837-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03837-0

Keywords

Navigation