Skip to main content

Glucocorticoids and Metabolic Control

  • Chapter
Metabolic Control

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 233))

Abstract

In response to stress, the central nervous system initiates a signaling cascade, which leads to the production of glucocorticoids (GCs). GCs act through the glucocorticoid receptor (GR) to coordinate the appropriate cellular response with the primary goal of mobilizing the storage forms of carbon precursors to generate a continuous glucose supply for the brain. Although GCs are critical for maintaining energy homeostasis, excessive GC stimulation leads to a number of undesirable side effects, including hyperglycemia, insulin resistance, fatty liver, obesity, and muscle wasting leading to severe metabolic dysfunction. Summarized below are the diverse metabolic roles of glucocorticoids in energy homeostasis and dysregulation, focusing specifically on glucose, lipid, and protein metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham SB, Rubino D, Sinaii N, Ramsey S, Nieman LK (2013) Cortisol, obesity, and the metabolic syndrome: a cross-sectional study of obese subjects and review of the literature. Obesity 21:E105–E117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altman KI, Miller LL, Bly CG (1951) The synergistic effect of cortisone and insulin on lipogenesis in the perfused rat liver as studied with alpha-C14-acetate. Arch Biochem Biophys 31:329–331

    Article  CAS  PubMed  Google Scholar 

  • Amatruda JM, Danahy SA, Chang CL (1983) The effects of glucocorticoids on insulin-stimulated lipogenesis in primary cultures of rat hepatocytes. Biochem J 212:135–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baehr LM, Furlow JD, Bodine SC (2011) Muscle sparing in muscle RING finger 1 null mice: response to synthetic glucocorticoids. J Physiol 589:4759–4776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernal-Mizrachi C, Weng S, Feng C, Finck BN, Knutsen RH, Leone TC, Coleman T, Mecham RP, Kelly DP, Semenkovich CF (2003) Dexamethasone induction of hypertension and diabetes is PPAR-alpha dependent in LDL receptor-null mice. Nat Med 9:1069–1075

    Article  CAS  PubMed  Google Scholar 

  • Bernal-Mizrachi C, Xiaozhong L, Yin L, Knutsen RH, Howard MJ, Arends JJ, Desantis P, Coleman T, Semenkovich CF (2007) An afferent vagal nerve pathway links hepatic PPARalpha activation to glucocorticoid-induced insulin resistance and hypertension. Cell Metab 5:91–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blondeau B, Sahly I, Massourides E, Singh-Estivalet A, Valtat B, Dorchene D, Jaisser F, Breant B, Tronche F (2012) Novel transgenic mice for inducible gene overexpression in pancreatic cells define glucocorticoid receptor-mediated regulations of beta cells. PLoS One 7:e30210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA, Poueymirou WT, Panaro FJ, Na E, Dharmarajan K, Pan ZQ, Valenzuela DM, DeChiara TM, Stitt TN, Yancopoulos GD, Glass DJ (2001) Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294:1704–1708

    Article  CAS  PubMed  Google Scholar 

  • Bujalska IJ, Kumar S, Stewart PM (1997) Does central obesity reflect “Cushing’s disease of the omentum”? Lancet 349:1210–1213

    Article  CAS  PubMed  Google Scholar 

  • Campbell JE, Peckett AJ, D’Souza AM, Hawke TJ, Riddell MC (2011) Adipogenic and lipolytic effects of chronic glucocorticoid exposure. Am J Physiol Cell Physiol 300:C198–C209

    Article  CAS  PubMed  Google Scholar 

  • Caperuto LC, Anhe GF, Amanso AM, Ribeiro LM, Medina MC, Souza LC, Carvalho OM, Bordin S, Saad MJ, Carvalho CR (2006) Distinct regulation of IRS proteins in adipose tissue from obese aged and dexamethasone-treated rats. Endocrine 29:391–398

    Article  CAS  PubMed  Google Scholar 

  • Chakravarty K, Cassuto H, Reshef L, Hanson RW (2005) Factors that control the tissue-specific transcription of the gene for phosphoenolpyruvate carboxykinase-C. Crit Rev Biochem Mol Biol 40:129–154

    Article  CAS  PubMed  Google Scholar 

  • Chimin P, Farias Tda S, Torres-Leal FL, Bolsoni-Lopes A, Campana AB, Andreotti S, Lima FB (2014) Chronic glucocorticoid treatment enhances lipogenic activity in visceral adipocytes of male Wistar rats. Acta Physiol 211:409–420

    Article  CAS  Google Scholar 

  • Clarke BA, Drujan D, Willis MS, Murphy LO, Corpina RA, Burova E, Rakhilin SV, Stitt TN, Patterson C, Latres E, Glass DJ (2007) The E3 Ligase MuRF1 degrades myosin heavy chain protein in dexamethasone-treated skeletal muscle. Cell Metab 6:376–385

    Article  CAS  PubMed  Google Scholar 

  • Cole TG, Wilcox HG, Heimberg M (1982) Effects of adrenalectomy and dexamethasone on hepatic lipid metabolism. J Lipid Res 23:81–91

    CAS  PubMed  Google Scholar 

  • Connaughton S, Chowdhury F, Attia RR, Song S, Zhang Y, Elam MB, Cook GA, Park EA (2010) Regulation of pyruvate dehydrogenase kinase isoform 4 (PDK4) gene expression by glucocorticoids and insulin. Mol Cell Endocrinol 315:159–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Csibi A, Leibovitch MP, Cornille K, Tintignac LA, Leibovitch SA (2009) MAFbx/Atrogin-1 controls the activity of the initiation factor eIF3-f in skeletal muscle atrophy by targeting multiple C-terminal lysines. J Biol Chem 284:4413–4421

    Article  CAS  PubMed  Google Scholar 

  • Cypess AM, Haft CR, Laughlin MR, Hu HH (2014) Brown fat in humans: consensus points and experimental guidelines. Cell Metab 20:408–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Guia RM, Rose AJ, Sommerfeld A, Seibert O, Strzoda D, Zota A, Feuchter Y, Krones-Herzig A, Sijmonsma T, Kirilov M, Sticht C, Gretz N, Dallinga-Thie G, Diederichs S, Kloting N, Bluher M, Berriel Diaz M, Herzig S (2015) microRNA-379 couples glucocorticoid hormones to dysfunctional lipid homeostasis. EMBO J 34:344–360

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Wulf H, Hers HG (1968) The role of glucose, glucagon and glucocorticoids in the regulation of liver glycogen synthesis. Eur J Biochem 6:558–564

    Article  PubMed  Google Scholar 

  • Diamant S, Shafrir E (1975) Modulation of the activity of insulin-dependent enzymes of lipogenesis by glucocorticoids. Eur J Biochem 53:541–546

    Article  CAS  PubMed  Google Scholar 

  • Dolinsky VW, Douglas DN, Lehner R, Vance DE (2004) Regulation of the enzymes of hepatic microsomal triacylglycerol lipolysis and re-esterification by the glucocorticoid dexamethasone. Biochem J 378:967–974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong Y, Pan JS, Zhang L (2013) Myostatin suppression of Akirin1 mediates glucocorticoid-induced satellite cell dysfunction. PLoS One 8:e58554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du K, Herzig S, Kulkarni RN, Montminy M (2003) TRB3: a tribbles homolog that inhibits Akt/PKB activation by insulin in liver. Science 300:1574–1577

    Article  CAS  PubMed  Google Scholar 

  • Gilson H, Schakman O, Combaret L, Lause P, Grobet L, Attaix D, Ketelslegers JM, Thissen JP (2007) Myostatin gene deletion prevents glucocorticoid-induced muscle atrophy. Endocrinology 148:452–460

    Article  CAS  PubMed  Google Scholar 

  • Giorgino F, Almahfouz A, Goodyear LJ, Smith RJ (1993) Glucocorticoid regulation of insulin receptor and substrate IRS-1 tyrosine phosphorylation in rat skeletal muscle in vivo. J Clin Invest 91:2020–2030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gray NE, Lam LN, Yang K, Zhou AY, Koliwad S, Wang JC (2012) Angiopoietin-like 4 (Angptl4) protein is a physiological mediator of intracellular lipolysis in murine adipocytes. J Biol Chem 287:8444–8456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gremlich S, Roduit R, Thorens B (1997) Dexamethasone induces posttranslational degradation of GLUT2 and inhibition of insulin secretion in isolated pancreatic beta cells. Comparison with the effects of fatty acids. J Biol Chem 272:3216–3222

    Article  CAS  PubMed  Google Scholar 

  • Haber RS, Weinstein SP (1992) Role of glucose transporters in glucocorticoid-induced insulin resistance. GLUT4 isoform in rat skeletal muscle is not decreased by dexamethasone. Diabetes 41:728–735

    Article  CAS  PubMed  Google Scholar 

  • Hall RK, Wang XL, George L, Koch SR, Granner DK (2007) Insulin represses phosphoenolpyruvate carboxykinase gene transcription by causing the rapid disruption of an active transcription complex: a potential epigenetic effect. Mol Endocrinol 21:550–563

    Article  CAS  PubMed  Google Scholar 

  • Hannun YA (1994) The sphingomyelin cycle and the second messenger function of ceramide. J Biol Chem 269:3125–3128

    CAS  PubMed  Google Scholar 

  • Hautanen A, Raikkonen K, Adlercreutz H (1997) Associations between pituitary-adrenocortical function and abdominal obesity, hyperinsulinaemia and dyslipidaemia in normotensive males. J Intern Med 241:451–461

    Article  CAS  PubMed  Google Scholar 

  • Holland WL, Brozinick JT, Wang LP, Hawkins ED, Sargent KM, Liu Y, Narra K, Hoehn KL, Knotts TA, Siesky A, Nelson DH, Karathanasis SK, Fontenot GK, Birnbaum MJ, Summers SA (2007) Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-, and obesity-induced insulin resistance. Cell Metab 5:167–179

    Article  CAS  PubMed  Google Scholar 

  • Hu Z, Wang H, Lee IH, Du J, Mitch WE (2009) Endogenous glucocorticoids and impaired insulin signaling are both required to stimulate muscle wasting under pathophysiological conditions in mice. J Clin Invest 119:3059–3069

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ichijo T, Voutetakis A, Cotrim AP, Bhattachryya N, Fujii M, Chrousos GP, Kino T (2005) The Smad6-histone deacetylase 3 complex silences the transcriptional activity of the glucocorticoid receptor: potential clinical implications. J Biol Chem 280:42067–42077

    Article  CAS  PubMed  Google Scholar 

  • Jia Y, Viswakarma N, Fu T, Yu S, Rao MS, Borensztajn J, Reddy JK (2009) Conditional ablation of mediator subunit MED1 (MED1/PPARBP) gene in mouse liver attenuates glucocorticoid receptor agonist dexamethasone-induced hepatic steatosis. Gene Expr 14:291–306

    Article  PubMed  PubMed Central  Google Scholar 

  • Kjolhede EA, Gustafsson PE, Gustafsson PA, Nelson N (2014) Overweight and obese children have lower cortisol levels than normal weight children. Acta Paediatr 103:295–299

    Article  PubMed  Google Scholar 

  • Koliwad SK, Kuo T, Shipp LE, Gray NE, Backhed F, So AY, Farese RV Jr, Wang JC (2009) Angiopoietin-like 4 (ANGPTL4, fasting-induced adipose factor) is a direct glucocorticoid receptor target and participates in glucocorticoid-regulated triglyceride metabolism. J Biol Chem 284:25593–25601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovacs JJ, Murphy PJ, Gaillard S, Zhao X, Wu JT, Nicchitta CV, Yoshida M, Toft DO, Pratt WB, Yao TP (2005) HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol Cell 18:601–607

    Article  CAS  PubMed  Google Scholar 

  • Kuo T, Lew MJ, Mayba O, Harris CA, Speed TP, Wang JC (2012) Genome-wide analysis of glucocorticoid receptor-binding sites in myotubes identifies gene networks modulating insulin signaling. Proc Natl Acad Sci U S A 109:11160–11165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuo T, Harris CA, Wang JC (2013) Metabolic functions of glucocorticoid receptor in skeletal muscle. Mol Cell Endocrinol 380:79–88

    Article  CAS  PubMed  Google Scholar 

  • Kwon HS, Huang B, Unterman TG, Harris RA (2004) Protein kinase B-alpha inhibits human pyruvate dehydrogenase kinase-4 gene induction by dexamethasone through inactivation of FOXO transcription factors. Diabetes 53:899–910

    Article  CAS  PubMed  Google Scholar 

  • Lagirand-Cantaloube J, Cornille K, Csibi A, Batonnet-Pichon S, Leibovitch MP, Leibovitch SA (2009) Inhibition of atrogin-1/MAFbx mediated MyoD proteolysis prevents skeletal muscle atrophy in vivo. PLoS One 4:e4973

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Laloux M, Stalmans W, Hers HG (1983) On the mechanism by which glucocorticoids cause the activation of glycogen synthase in mouse and rat livers. Eur J Biochem 136:175–181

    Article  CAS  PubMed  Google Scholar 

  • Lambillotte C, Gilon P, Henquin JC (1997) Direct glucocorticoid inhibition of insulin secretion. An in vitro study of dexamethasone effects in mouse islets. J Clin Invest 99:414–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langley SC, York DA (1990) Effects of antiglucocorticoid RU 486 on development of obesity in obese fa/fa Zucker rats. Am J Physiol 259:R539–R544

    CAS  PubMed  Google Scholar 

  • Lemberger T, Staels B, Saladin R, Desvergne B, Auwerx J, Wahli W (1994) Regulation of the peroxisome proliferator-activated receptor alpha gene by glucocorticoids. J Biol Chem 269:24527–24530

    CAS  PubMed  Google Scholar 

  • Lemke U, Krones-Herzig A, Berriel Diaz M, Narvekar P, Ziegler A, Vegiopoulos A, Cato AC, Bohl S, Klingmuller U, Screaton RA, Muller-Decker K, Kersten S, Herzig S (2008) The glucocorticoid receptor controls hepatic dyslipidemia through Hes1. Cell Metab 8:212–223

    Article  CAS  PubMed  Google Scholar 

  • Letteron P, Brahimi-Bourouina N, Robin MA, Moreau A, Feldmann G, Pessayre D (1997) Glucocorticoids inhibit mitochondrial matrix acyl-CoA dehydrogenases and fatty acid beta-oxidation. Am J Physiol 272:G1141–G1150

    CAS  PubMed  Google Scholar 

  • Lin B, Morris DW, Chou JY (1998) Hepatocyte nuclear factor 1alpha is an accessory factor required for activation of glucose-6-phosphatase gene transcription by glucocorticoids. DNA Cell Biol 17:967–974

    Article  CAS  PubMed  Google Scholar 

  • Linssen MM, van Raalte DH, Toonen EJ, Alkema W, van der Zon GC, Dokter WH, Diamant M, Guigas B, Ouwens DM (2011) Prednisolone-induced beta cell dysfunction is associated with impaired endoplasmic reticulum homeostasis in INS-1E cells. Cell Signal 23:1708–1715

    Article  CAS  PubMed  Google Scholar 

  • Long W, Barrett EJ, Wei L, Liu Z (2003) Adrenalectomy enhances the insulin sensitivity of muscle protein synthesis. Am J Physiol Endocrinol Metab 284:E102–E109

    Article  CAS  PubMed  Google Scholar 

  • Ma K, Mallidis C, Bhasin S, Mahabadi V, Artaza J, Gonzalez-Cadavid N, Arias J, Salehian B (2003) Glucocorticoid-induced skeletal muscle atrophy is associated with upregulation of myostatin gene expression. Am J Physiol Endocrinol Metab 285:E363–E371

    Article  CAS  PubMed  Google Scholar 

  • Mangiapane EH, Brindley DN (1986) Effects of dexamethasone and insulin on the synthesis of triacylglycerols and phosphatidylcholine and the secretion of very-low-density lipoproteins and lysophosphatidylcholine by monolayer cultures of rat hepatocytes. Biochem J 233:151–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masuzaki H, Paterson J, Shinyama H, Morton NM, Mullins JJ, Seckl JR, Flier JS (2001) A transgenic model of visceral obesity and the metabolic syndrome. Science 294:2166–2170

    Article  CAS  PubMed  Google Scholar 

  • Menconi M, Gonnella P, Petkova V, Lecker S, Hasselgren PO (2008) Dexamethasone and corticosterone induce similar, but not identical, muscle wasting responses in cultured L6 and C2C12 myotubes. J Cell Biochem 105:353–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minshull M, Strong CR (1985) The stimulation of lipogenesis in white adipose tissue from fed rats by corticosterone. Int J Biochem 17:529–532

    Article  CAS  PubMed  Google Scholar 

  • Nader N, Ng SS, Lambrou GI, Pervanidou P, Wang Y, Chrousos GP, Kino T (2010) AMPK regulates metabolic actions of glucocorticoids by phosphorylating the glucocorticoid receptor through p38 MAPK. Mol Endocrinol 24:1748–1764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nader N, Ng SS, Wang Y, Abel BS, Chrousos GP, Kino T (2012) Liver x receptors regulate the transcriptional activity of the glucocorticoid receptor: implications for the carbohydrate metabolism. PLoS One 7:e26751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakae J, Kitamura T, Silver DL, Accili D (2001) The forkhead transcription factor Foxo1 (Fkhr) confers insulin sensitivity onto glucose-6-phosphatase expression. J Clin Invest 108:1359–1367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicod N, Giusti V, Besse C, Tappy L (2003) Metabolic adaptations to dexamethasone-induced insulin resistance in healthy volunteers. Obes Res 11:625–631

    Article  CAS  PubMed  Google Scholar 

  • Opherk C, Tronche F, Kellendonk C, Kohlmuller D, Schulze A, Schmid W, Schutz G (2004) Inactivation of the glucocorticoid receptor in hepatocytes leads to fasting hypoglycemia and ameliorates hyperglycemia in streptozotocin-induced diabetes mellitus. Mol Endocrinol 18:1346–1353

    Article  CAS  PubMed  Google Scholar 

  • Patel R, Patel M, Tsai R, Lin V, Bookout AL, Zhang Y, Magomedova L, Li T, Chan JF, Budd C, Mangelsdorf DJ, Cummins CL (2011) LXRbeta is required for glucocorticoid-induced hyperglycemia and hepatosteatosis in mice. J Clin Invest 121:431–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peckett AJ, Wright DC, Riddell MC (2011) The effects of glucocorticoids on adipose tissue lipid metabolism. Metabolism 60:1500–1510

    Article  CAS  PubMed  Google Scholar 

  • Phillips DI, Barker DJ, Fall CH, Seckl JR, Whorwood CB, Wood PJ, Walker BR (1998) Elevated plasma cortisol concentrations: a link between low birth weight and the insulin resistance syndrome? J Clin Endocrinol Metab 83:757–760

    CAS  PubMed  Google Scholar 

  • Praveen EP, Sahoo JP, Kulshreshtha B, Khurana ML, Gupta N, Dwivedi SN, Kumar G, Ammini AC (2011) Morning cortisol is lower in obese individuals with normal glucose tolerance. Diabetes Metab Syndr Obes 4:347–352

    CAS  PubMed  PubMed Central  Google Scholar 

  • Puigserver P, Rhee J, Donovan J, Walkey CJ, Yoon JC, Oriente F, Kitamura Y, Altomonte J, Dong H, Accili D, Spiegelman BM (2003) Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction. Nature 423:550–555

    Article  CAS  PubMed  Google Scholar 

  • Rafacho A, Boschero AC, Ortsäter H (2012) Functional and molecular aspects of glucocorticoids in the endocrine pancreas and glucose homeostasis. In: Magdeldin S (ed) State of the art of therapeutic endocrinology. InTech, Rijeka

    Google Scholar 

  • Ranta F, Avram D, Berchtold S, Dufer M, Drews G, Lang F, Ullrich S (2006) Dexamethasone induces cell death in insulin-secreting cells, an effect reversed by exendin-4. Diabetes 55:1380–1390

    Article  CAS  PubMed  Google Scholar 

  • Rebuffe-Scrive M, Krotkiewski M, Elfverson J, Bjorntorp P (1988) Muscle and adipose tissue morphology and metabolism in Cushing’s syndrome. J Clin Endocrinol Metab 67:1122–1128

    Article  CAS  PubMed  Google Scholar 

  • Reich E, Tamary A, Sionov RV, Melloul D (2012) Involvement of thioredoxin-interacting protein (TXNIP) in glucocorticoid-mediated beta cell death. Diabetologia 55:1048–1057

    Article  CAS  PubMed  Google Scholar 

  • Ren R, Oakley RH, Cruz-Topete D, Cidlowski JA (2012) Dual role for glucocorticoids in cardiomyocyte hypertrophy and apoptosis. Endocrinology 153:5346–5360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Revollo JR, Oakley RH, Lu NZ, Kadmiel M, Gandhavadi M, Cidlowski JA (2013) HES1 is a master regulator of glucocorticoid receptor-dependent gene expression. Sci Signal 6:ra103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reynolds RM, Walker BR, Syddall HE, Andrew R, Wood PJ, Whorwood CB, Phillips DI (2001) Altered control of cortisol secretion in adult men with low birth weight and cardiovascular risk factors. J Clin Endocrinol Metab 86:245–250

    CAS  PubMed  Google Scholar 

  • Rhee J, Inoue Y, Yoon JC, Puigserver P, Fan M, Gonzalez FJ, Spiegelman BM (2003) Regulation of hepatic fasting response by PPARgamma coactivator-1alpha (PGC-1): requirement for hepatocyte nuclear factor 4alpha in gluconeogenesis. Proc Natl Acad Sci U S A 100:4012–4017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rose AJ, Berriel Diaz M, Reimann A, Klement J, Walcher T, Krones-Herzig A, Strobel O, Werner J, Peters A, Kleyman A, Tuckermann JP, Vegiopoulos A, Herzig S (2011) Molecular control of systemic bile acid homeostasis by the liver glucocorticoid receptor. Cell Metab 14:123–130

    Article  CAS  PubMed  Google Scholar 

  • Ruzzin J, Wagman AS, Jensen J (2005) Glucocorticoid-induced insulin resistance in skeletal muscles: defects in insulin signalling and the effects of a selective glycogen synthase kinase-3 inhibitor. Diabetologia 48:2119–2130

    Article  CAS  PubMed  Google Scholar 

  • Saad MJ, Folli F, Kahn JA, Kahn CR (1993) Modulation of insulin receptor, insulin receptor substrate-1, and phosphatidylinositol 3-kinase in liver and muscle of dexamethasone-treated rats. J Clin Invest 92:2065–2072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakoda H, Ogihara T, Anai M, Funaki M, Inukai K, Katagiri H, Fukushima Y, Onishi Y, Ono H, Fujishiro M, Kikuchi M, Oka Y, Asano T (2000) Dexamethasone-induced insulin resistance in 3T3-L1 adipocytes is due to inhibition of glucose transport rather than insulin signal transduction. Diabetes 49:1700–1708

    Article  CAS  PubMed  Google Scholar 

  • Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, Walsh K, Schiaffino S, Lecker SH, Goldberg AL (2004) Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117:399–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schacke H, Docke WD, Asadullah K (2002) Mechanisms involved in the side effects of glucocorticoids. Pharmacol Ther 96:23–43

    Article  CAS  PubMed  Google Scholar 

  • Schakman O, Gilson H, Thissen JP (2008) Mechanisms of glucocorticoid-induced myopathy. J Endocrinol 197:1–10

    Article  CAS  PubMed  Google Scholar 

  • Seckl JR, Walker BR (2001) Minireview: 11beta-hydroxysteroid dehydrogenase type 1 – a tissue-specific amplifier of glucocorticoid action. Endocrinology 142:1371–1376

    CAS  PubMed  Google Scholar 

  • Seckl JR, Morton NM, Chapman KE, Walker BR (2004) Glucocorticoids and 11beta-hydroxysteroid dehydrogenase in adipose tissue. Recent Prog Horm Res 59:359–393

    Article  CAS  PubMed  Google Scholar 

  • Shan L, Yu XC, Liu Z, Hu Y, Sturgis LT, Miranda ML, Liu Q (2009) The angiopoietin-like proteins ANGPTL3 and ANGPTL4 inhibit lipoprotein lipase activity through distinct mechanisms. J Biol Chem 284:1419–1424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shibli-Rahhal A, Van Beek M, Schlechte JA (2006) Cushing’s syndrome. Clin Dermatol 24:260–265

    Article  PubMed  Google Scholar 

  • Shima A, Shinohara Y, Doi K, Terada H (1994) Normal differentiation of rat brown adipocytes in primary culture judged by their expressions of uncoupling protein and the physiological isoform of glucose-transporter. Biochim Biophys Acta-Mol Cell Res 1223:1–8

    Article  CAS  Google Scholar 

  • Shimizu N, Yoshikawa N, Ito N, Maruyama T, Suzuki Y, Takeda S, Nakae J, Tagata Y, Nishitani S, Takehana K, Sano M, Fukuda K, Suematsu M, Morimoto C, Tanaka H (2011) Crosstalk between glucocorticoid receptor and nutritional sensor mTOR in skeletal muscle. Cell Metab 13:170–182

    Article  CAS  PubMed  Google Scholar 

  • Slavin BG, Ong JM, Kern PA (1994) Hormonal regulation of hormone-sensitive lipase activity and mRNA levels in isolated rat adipocytes. J Lipid Res 35:1535–1541

    CAS  PubMed  Google Scholar 

  • Sommerfeld A, Krones-Herzig A, Herzig S (2011) Transcriptional co-factors and hepatic energy metabolism. Mol Cell Endocrinol 332:21–31

    Article  CAS  PubMed  Google Scholar 

  • Soumano K, Desbiens S, Rabelo R, Bakopanos E, Camirand A, Silva JE (2000) Glucocorticoids inhibit the transcriptional response of the uncoupling protein-1 gene to adrenergic stimulation in a brown adipose cell line. Mol Cell Endocrinol 165:7–15

    Article  CAS  PubMed  Google Scholar 

  • Stanford KI, Middelbeek RJ, Townsend KL, An D, Nygaard EB, Hitchcox KM, Markan KR, Nakano K, Hirshman MF, Tseng YH, Goodyear LJ (2013) Brown adipose tissue regulates glucose homeostasis and insulin sensitivity. J Clin Invest 123:215–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steger DJ, Grant GR, Schupp M, Tomaru T, Lefterova MI, Schug J, Manduchi E, Stoeckert CJ Jr, Lazar MA (2010) Propagation of adipogenic signals through an epigenomic transition state. Genes Dev 24:1035–1044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stolk RP, Lamberts SW, de Jong FH, Pols HA, Grobbee DE (1996) Gender differences in the associations between cortisol and insulin in healthy subjects. J Endocrinol 149:313–318

    Article  CAS  PubMed  Google Scholar 

  • Strack AM, Bradbury MJ, Dallman MF (1995) Corticosterone decreases nonshivering thermogenesis and increases lipid storage in brown adipose tissue. Am J Physiol 268:R183–R191

    CAS  PubMed  Google Scholar 

  • Sugden MC, Holness MJ (2003) Recent advances in mechanisms regulating glucose oxidation at the level of the pyruvate dehydrogenase complex by PDKs. Am J Physiol Endocrinol Metab 284:E855–E862

    Article  CAS  PubMed  Google Scholar 

  • Taskinen MR, Nikkila EA, Pelkonen R, Sane T (1983) Plasma lipoproteins, lipolytic enzymes, and very low density lipoprotein triglyceride turnover in Cushing’s syndrome. J Clin Endocrinol Metab 57:619–626

    Article  CAS  PubMed  Google Scholar 

  • Tiryakioglu O, Ugurlu S, Yalin S, Yirmibescik S, Caglar E, Yetkin DO, Kadioglu P (2010) Screening for Cushing’s syndrome in obese patients. Clinics 65:9–13

    Article  PubMed  PubMed Central  Google Scholar 

  • Ullrich S, Berchtold S, Ranta F, Seebohm G, Henke G, Lupescu A, Mack AF, Chao CM, Su J, Nitschke R, Alexander D, Friedrich B, Wulff P, Kuhl D, Lang F (2005) Serum- and glucocorticoid-inducible kinase 1 (SGK1) mediates glucocorticoid-induced inhibition of insulin secretion. Diabetes 54:1090–1099

    Article  CAS  PubMed  Google Scholar 

  • Valtat B, Dupuis C, Zenaty D, Singh-Estivalet A, Tronche F, Breant B, Blondeau B (2011) Genetic evidence of the programming of beta cell mass and function by glucocorticoids in mice. Diabetologia 54:350–359

    Article  CAS  PubMed  Google Scholar 

  • Vander Kooi BT, Onuma H, Oeser JK, Svitek CA, Allen SR, Vander Kooi CW, Chazin WJ, O’Brien RM (2005) The glucose-6-phosphatase catalytic subunit gene promoter contains both positive and negative glucocorticoid response elements. Mol Endocrinol 19:3001–3022

    Article  CAS  PubMed  Google Scholar 

  • Vila G, Krebs M, Riedl M, Baumgartner-Parzer SM, Clodi M, Maier C, Pacini G, Luger A (2010) Acute effects of hydrocortisone on the metabolic response to a glucose load: increase in the first-phase insulin secretion. Eur J Endocrinol/European Federation of Endocrine Societies 163:225–231

    Article  CAS  Google Scholar 

  • Villena JA, Roy S, Sarkadi-Nagy E, Kim KH, Sul HS (2004) Desnutrin, an adipocyte gene encoding a novel patatin domain-containing protein, is induced by fasting and glucocorticoids: ectopic expression of desnutrin increases triglyceride hydrolysis. J Biol Chem 279:47066–47075

    Article  CAS  PubMed  Google Scholar 

  • Volpe JJ, Marasa JC (1975) Hormonal regulation of fatty acid synthetase, acetyl-CoA carboxylase and fatty acid synthesis in mammalian adipose tissue and liver. Biochim Biophys Acta 380:454–472

    Article  CAS  PubMed  Google Scholar 

  • Walker BR, Phillips DI, Noon JP, Panarelli M, Andrew R, Edwards HV, Holton DW, Seckl JR, Webb DJ, Watt GC (1998) Increased glucocorticoid activity in men with cardiovascular risk factors. Hypertension 31:891–895

    Article  CAS  PubMed  Google Scholar 

  • Wang XL, Herzog B, Waltner-Law M, Hall RK, Shiota M, Granner DK (2004) The synergistic effect of dexamethasone and all-trans-retinoic acid on hepatic phosphoenolpyruvate carboxykinase gene expression involves the coactivator p300. J Biol Chem 279:34191–34200

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Kubica N, Ellisen LW, Jefferson LS, Kimball SR (2006) Dexamethasone represses signaling through the mammalian target of rapamycin in muscle cells by enhancing expression of REDD1. J Biol Chem 281:39128–39134

    Article  CAS  PubMed  Google Scholar 

  • Watson ML, Baehr LM, Reichardt HM, Tuckermann JP, Bodine SC, Furlow JD (2012) A cell-autonomous role for the glucocorticoid receptor in skeletal muscle atrophy induced by systemic glucocorticoid exposure. Am J Physiol Endocrinol Metab 302:E1210–E1220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weinstein SP, Paquin T, Pritsker A, Haber RS (1995) Glucocorticoid-induced insulin resistance: dexamethasone inhibits the activation of glucose transport in rat skeletal muscle by both insulin- and non-insulin-related stimuli. Diabetes 44:441–445

    Article  CAS  PubMed  Google Scholar 

  • Weinstein SP, Wilson CM, Pritsker A, Cushman SW (1998) Dexamethasone inhibits insulin-stimulated recruitment of GLUT4 to the cell surface in rat skeletal muscle. Metabolism 47:3–6

    Article  CAS  PubMed  Google Scholar 

  • Xu C, He J, Jiang H, Zu L, Zhai W, Pu S, Xu G (2009) Direct effect of glucocorticoids on lipolysis in adipocytes. Mol Endocrinol 23:1161–1170

    Article  CAS  PubMed  Google Scholar 

  • Yi CX, Foppen E, Abplanalp W, Gao Y, Alkemade A, la Fleur SE, Serlie MJ, Fliers E, Buijs RM, Tschop MH, Kalsbeek A (2012) Glucocorticoid signaling in the arcuate nucleus modulates hepatic insulin sensitivity. Diabetes 61:339–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon JC, Puigserver P, Chen G, Donovan J, Wu Z, Rhee J, Adelmant G, Stafford J, Kahn CR, Granner DK, Newgard CB, Spiegelman BM (2001) Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 413:131–138

    Article  CAS  PubMed  Google Scholar 

  • Yu CY, Mayba O, Lee JV, Tran J, Harris C, Speed TP, Wang JC (2010) Genome-wide analysis of glucocorticoid receptor binding regions in adipocytes reveal gene network involved in triglyceride homeostasis. PLoS One 5:e15188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yukimura Y, Bray GA, Wolfsen AR (1978) Some effects of adrenalectomy in the fatty rat. Endocrinology 103:1924–1928

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolyn L. Cummins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Magomedova, L., Cummins, C.L. (2015). Glucocorticoids and Metabolic Control. In: Herzig, S. (eds) Metabolic Control. Handbook of Experimental Pharmacology, vol 233. Springer, Cham. https://doi.org/10.1007/164_2015_1

Download citation

Publish with us

Policies and ethics