Skip to main content

Advertisement

Log in

Evaluation of Resveratrol and Piceatannol Anticonvulsant Potential in Adult Zebrafish (Danio rerio)

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Epilepsy is a common neurological disorder which affects 50 million people worldwide. Patients with epilepsy may present cognitive deficits and psychological impairment. Currently, 30% of patients fail to respond to any available antiseizure drug, and a significant number of patients do not well tolerate the offered treatments. Then, it is necessary to find out alternatives for controlling epileptic seizures. Studies have shown that despite its neuroprotective effects, resveratrol shows poor anticonvulsant properties. Resveratrol analog, piceatannol, possesses higher biological activity than resveratrol and could be an alternative to control seizure. Thus, the present study investigated the effects of resveratrol and piceatannol in pentylenetetrazole-induced seizures in adult zebrafish (Danio rerio). Only the experimental positive control (diazepam) showed anticonvulsant effect in this study. In addition, no behavioral changes were observed 24 h after seizure occurrence. Finally, the expression of genes related to neuronal activity (c-fos), neurogenesis (p70S6Ka and p70S6Kb), inflammatory response (interleukin 1β), and cell apoptosis (caspase-3) did not change by pentylenetetrazole-induced seizures. Therefore, we failed to observe any anticonvulsant and neuroprotective potential of resveratrol and piceatannol in adult zebrafish. However, resveratrol and piceatannol benefits in epilepsy are not discharged, and more studies are necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. World Health Organization (2020) Available at https://www.who.int/news-room/fact-sheets/detail/epilepsy. Accessed 8 Mar 2022

  2. Devinsky O, Vezzani A, O’Brien TJ et al (2018) Epilepsy. Nat Rev Dis Primer. https://doi.org/10.1038/nrdp.2018.24

    Article  Google Scholar 

  3. Berg AT (2006) Defining intractable epilepsy. Adv Neurol 97:5–10

    PubMed  Google Scholar 

  4. Mishra V, Shuai B, Kodali M et al (2015) Resveratrol treatment after status epilepticus restrains neurodegeneration and abnormal neurogenesis with suppression of oxidative stress and inflammation. Sci Rep. https://doi.org/10.1038/srep17807

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wu Z, Xu Q, Zhang L et al (2009) Protective effect of resveratrol against kainate-induced temporal lobe epilepsy in rats. Neurochem Res 34:1393–1400. https://doi.org/10.1007/s11064-009-9920-0

    Article  CAS  PubMed  Google Scholar 

  6. Tomaciello F, Leclercq K, Kaminski RM (2016) Resveratrol lacks protective activity against acute seizures in mouse models. Neurosci Lett 632:199–203. https://doi.org/10.1016/j.neulet.2016.09.002

    Article  CAS  PubMed  Google Scholar 

  7. Almeida ER, Lima-Rezende CA, Schneider SE et al (2021) Micronized resveratrol shows anticonvulsant properties in pentylenetetrazole-induced seizure model in adult zebrafish. Neurochem Res 46:241–251. https://doi.org/10.1007/s11064-020-03158-0

    Article  CAS  PubMed  Google Scholar 

  8. Decui L, Garbinato CLL, Schneider SE et al (2020) Micronized resveratrol shows promising effects in a seizure model in zebrafish and signalizes an important advance in epilepsy treatment. Epilepsy Res 159:106243. https://doi.org/10.1016/j.eplepsyres.2019.106243

    Article  CAS  PubMed  Google Scholar 

  9. Ethemoglu MS, Seker FB, Akkaya H et al (2017) Anticonvulsant activity of resveratrol-loaded liposomes in vivo. Neuroscience 357:12–19. https://doi.org/10.1016/j.neuroscience.2017.05.026

    Article  CAS  PubMed  Google Scholar 

  10. Hosoda R, Hamada H, Uesugi D et al (2021) Different antioxidative and antiapoptotic effects of piceatannol and resveratrol. J Pharmacol Exp Ther 376:385–396. https://doi.org/10.1124/jpet.120.000096

    Article  CAS  PubMed  Google Scholar 

  11. Walle T (2004) High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab Dispos 32:1377–1382. https://doi.org/10.1124/dmd.104.000885

    Article  CAS  PubMed  Google Scholar 

  12. Nieoczym D, Socała K, Gawel K et al (2019) Anticonvulsant activity of pterostilbene in zebrafish and mouse acute seizure tests. Neurochem Res 44:1043–1055. https://doi.org/10.1007/s11064-019-02735-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nieoczym D, Socała K, Jedziniak P et al (2019) Effect of pterostilbene, a natural analog of resveratrol, on the activity of some antiepileptic drugs in the acute seizure tests in mice. Neurotox Res 36:859–869. https://doi.org/10.1007/s12640-019-00021-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hu W-H, Dai DK, Zheng BZ-Y et al (2020) Piceatannol, a natural analog of resveratrol, exerts anti-angiogenic efficiencies by blockage of vascular endothelial growth factor binding to its receptor. Molecules 25:3769. https://doi.org/10.3390/molecules25173769

    Article  CAS  PubMed Central  Google Scholar 

  15. Cao H, Zhang L, Qu Z et al (2021) The protective effect of hydroxylated fullerene pretreatment on pilocarpine-induced status epilepticus. Brain Res 1764:147468. https://doi.org/10.1016/j.brainres.2021.147468

    Article  CAS  PubMed  Google Scholar 

  16. Surh Y-J, Na H-K (2016) Therapeutic potential and molecular targets of piceatannol in chronic diseases. In: Gupta SC, Prasad S, Aggarwal BB (eds) Anti-inflammatory nutraceuticals and chronic diseases. Springer International Publishing, Cham, pp 185–211

    Chapter  Google Scholar 

  17. Jin C-Y, Moon D-O, Lee K-J et al (2006) Piceatannol attenuates lipopolysaccharide-induced NF-κB activation and NF-κB-related proinflammatory mediators in BV2 microglia. Pharmacol Res 54(6):461–467

    Article  CAS  Google Scholar 

  18. Setoguchi Y, Oritani Y, Ito R et al (2014) Absorption and metabolism of piceatannol in rats. J Agric Food Chem 62:2541–2548. https://doi.org/10.1021/jf404694y

    Article  CAS  PubMed  Google Scholar 

  19. Dai Y, Lim JX, Yeo SCM et al (2020) Biotransformation of piceatannol, a dietary resveratrol derivative: promises to human health. Mol Nutr Food Res 64:1900905. https://doi.org/10.1002/mnfr.201900905

    Article  CAS  Google Scholar 

  20. Piotrowska H, Kucinska M, Murias M (2012) Biological activity of piceatannol: leaving the shadow of resveratrol. Mutat Res Mutat Res 750:60–82. https://doi.org/10.1016/j.mrrev.2011.11.001

    Article  CAS  PubMed  Google Scholar 

  21. Thiel NA, Sachett A, Schneider SE et al (2020) Exposure to the herbicide 2,4-dichlorophenoxyacetic acid impairs mitochondrial function, oxidative status, and behavior in adult zebrafish. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-020-10497-6

    Article  Google Scholar 

  22. Ministério da Ciência Tecnologia e Inovação Conselho Nacional de Controle de experimentação animal. Diretrizes da prática de eutanásia do CONCEA (2018) Available at https://www.mctic.gov.br/mctic/export/sites/institucional/legislacao/Arquivos/Anexo_Res_Normativa_Concea_37_2018. Accessed 8 Mar 2022

  23. Percie du Sert N, Hurst V, Ahluwalia A et al (2020) The arrive guidelines 2.0: updated guidelines for reporting animal research. Br J Pharmacol 177:3617–3624. https://doi.org/10.1111/bph.15193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dzah CS, Duan Y, Zhang H et al (2020) Enhanced screening of key ultrasonication parameters: total phenol content and antioxidant activity assessment of tartary buckwheat (Fagopyrum tataricum) water extract. Sep Sci Technol 55:3242–3251. https://doi.org/10.1080/01496395.2019.1675704

    Article  CAS  Google Scholar 

  25. Harasym J, Satta E, Kaim U (2020) Ultrasound treatment of buckwheat grains impacts important functional properties of resulting flour. Molecules 25:3012. https://doi.org/10.3390/molecules25133012

    Article  CAS  PubMed Central  Google Scholar 

  26. Leclercq K, Afrikanova T, Langlois M et al (2015) Cross-species pharmacological characterization of the allylglycine seizure model in mice and larval zebrafish. Epilepsy Behav 45:53–63. https://doi.org/10.1016/j.yebeh.2015.03.019

    Article  PubMed  Google Scholar 

  27. Bertoncello KT, Aguiar GPS, Oliveira JV, Siebel AM (2018) Micronization potentiates curcumin’s anti-seizure effect and brings an important advance in epilepsy treatment. Sci Rep 8:2645. https://doi.org/10.1038/s41598-018-20897-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Baraban SC, Taylor MR, Castro PA, Baier H (2005) Pentylenetetrazole induced changes in zebrafish behavior, neural activity and c-fos expression. Neuroscience 131:759–768. https://doi.org/10.1016/j.neuroscience.2004.11.031

    Article  CAS  PubMed  Google Scholar 

  29. Mazzolini J, Le Clerc S, Morisse G et al (2020) Gene expression profiling reveals a conserved microglia signature in larval zebrafish. Glia 68:298–315. https://doi.org/10.1002/glia.23717

    Article  PubMed  Google Scholar 

  30. Ghaddar B, Veeren B, Rondeau P et al (2020) Impaired brain homeostasis and neurogenesis in diet-induced overweight zebrafish: a preventive role from A. borbonica extract. Sci Rep 10(1):14496. https://doi.org/10.1038/s41598-020-71402-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jaramillo ML, Pereira AG, Davico CE et al (2018) Evaluation of reference genes for reverse transcription-quantitative PCR assays in organs of zebrafish exposed to glyphosate-based herbicide, roundup. Animal 12:1424–1434. https://doi.org/10.1017/S1751731117003111

    Article  CAS  PubMed  Google Scholar 

  32. Tang R, Dodd A, Lai D et al (2007) Validation of zebrafish (Danio rerio) reference genes for quantitative real-time RT-PCR normalization. Acta Biochim Biophys Sin 39:384–390. https://doi.org/10.1111/j.1745-7270.2007.00283.x

    Article  CAS  PubMed  Google Scholar 

  33. Das T, Soren K, Yerasi M et al (2019) Revealing sex-specific molecular changes in hypoxia-ischemia induced neural damage and subsequent recovery using zebrafish model. Neurosci Lett 712:134492. https://doi.org/10.1016/j.neulet.2019.134492

    Article  CAS  PubMed  Google Scholar 

  34. Garbinato C, Lima-Rezende CA, Schneider SE et al (2021) Investigation on the anticonvulsant potential of luteolin and micronized luteolin in adult zebrafish (Danio rerio). Neurochem Res. https://doi.org/10.1007/s11064-021-03409-8

    Article  PubMed  Google Scholar 

  35. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  36. Siebel AM, Menezes FP, Capiotti KM et al (2015) Role of adenosine signaling on pentylenetetrazole-induced seizures in zebrafish. Zebrafish 12:127–136. https://doi.org/10.1089/zeb.2014.1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mei J, Zhang Q-Y, Li Z et al (2008) C1q-like inhibits p53-mediated apoptosis and controls normal hematopoiesis during zebrafish embryogenesis. Dev Biol 319:273–284. https://doi.org/10.1016/j.ydbio.2008.04.022

    Article  CAS  PubMed  Google Scholar 

  38. van der Vaart M, Svoboda O, Weijts BG et al (2017) Mecp2 regulates tnfa during zebrafish embryonic development and acute inflammation. Dis Model Mech 10:1439–1451. https://doi.org/10.1242/dmm.026922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Frank DF, Miller GW, Connon RE et al (2017) Transcriptomic profiling of mTOR and ryanodine receptor signaling molecules in developing zebrafish in the absence and presence of PCB 95. PeerJ 5:e4106. https://doi.org/10.7717/peerj.4106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hammer O, Harper DAT, Ryan PD (2001) Past: paleontological statistics software package for education and data analysis. Palaeontol Electron 4(1):4–9

    Google Scholar 

  41. Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223. https://doi.org/10.2307/2409177

    Article  PubMed  Google Scholar 

  42. Cottart C-H, Nivet-Antoine V, Laguillier-Morizot C, Beaudeux J-L (2010) Resveratrol bioavailability and toxicity in humans. Mol Nutr Food Res 54:7–16. https://doi.org/10.1002/mnfr.200900437

    Article  CAS  PubMed  Google Scholar 

  43. Katila N, Duwa R, Bhurtel S et al (2022) Enhancement of blood–brain barrier penetration and the neuroprotective effect of resveratrol. J Controlled Release 346:1–19. https://doi.org/10.1016/j.jconrel.2022.04.003

    Article  CAS  Google Scholar 

  44. Andrade S, Ramalho MJ, Pereira MC, Loureiro JA (2018) Resveratrol brain delivery for neurological disorders prevention and treatment. Front Pharmacol 9:1261. https://doi.org/10.3389/fphar.2018.01261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gerszon J, Serafin E, Buczkowski A et al (2018) Functional consequences of piceatannol binding to glyceraldehyde-3-phosphate dehydrogenase. PLoS ONE 13:e0190656. https://doi.org/10.1371/journal.pone.0190656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang Y, Zhang L-H, Chen X et al (2018) Piceatannol attenuates behavioral disorder and neurological deficits in aging mice via activating the Nrf2 pathway. Food Funct 9:371–378. https://doi.org/10.1039/C7FO01511A

    Article  CAS  PubMed  Google Scholar 

  47. Wang K, Zhang W, Liu J et al (2020) Piceatannol protects against cerebral ischemia/reperfusion-induced apoptosis and oxidative stress via the Sirt1/FoxO1 signaling pathway. Mol Med Rep 22:5399–5411. https://doi.org/10.3892/mmr.2020.11618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lin X, Itoga CA, Taha S et al (2018) c-Fos mapping of brain regions activated by multi-modal and electric foot shock stress. Neurobiol Stress 8:92–102. https://doi.org/10.1016/j.ynstr.2018.02.001

    Article  PubMed  PubMed Central  Google Scholar 

  49. Morgan JI, Cohen DR, Hempstead JL, Curran T (1987) Mapping patterns of c-fos expression in the central nervous system after seizure. Science 237:192–197. https://doi.org/10.1126/science.3037702

    Article  CAS  PubMed  Google Scholar 

  50. Xanthos DN, Sandkühler J (2014) Neurogenic neuroinflammation: inflammatory CNS reactions in response to neuronal activity. Nat Rev Neurosci 15:43–53. https://doi.org/10.1038/nrn3617

    Article  CAS  PubMed  Google Scholar 

  51. Dey A, Kang X, Qiu J et al (2016) Anti-inflammatory small molecules to treat seizures and epilepsy: from bench to bedside. Trends Pharmacol Sci 37:463–484. https://doi.org/10.1016/j.tips.2016.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Vezzani A, Balosso S, Ravizza T (2019) Neuroinflammatory pathways as treatment targets and biomarkers in epilepsy. Nat Rev Neurol 15:459–472. https://doi.org/10.1038/s41582-019-0217-x

    Article  CAS  PubMed  Google Scholar 

  53. Balosso S, Maroso M, Sanchez-Alavez M et al (2008) A novel non-transcriptional pathway mediates the proconvulsive effects of interleukin-1. Brain 131:3256–3265. https://doi.org/10.1093/brain/awn271

    Article  PubMed  PubMed Central  Google Scholar 

  54. Vezzani A, Balosso S, Ravizza T (2008) The role of cytokines in the pathophysiology of epilepsy. Brain Behav Immun 22:797–803. https://doi.org/10.1016/j.bbi.2008.03.009

    Article  CAS  PubMed  Google Scholar 

  55. Ostendorf AP, Wong M (2015) mTOR inhibition in epilepsy: rationale and clinical perspectives. CNS Drugs 29:91–99. https://doi.org/10.1007/s40263-014-0223-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lugrin J, Rosenblatt-Velin N, Parapanov R, Liaudet L (2014) The role of oxidative stress during inflammatory processes. Biol Chem 395:203–230. https://doi.org/10.1515/hsz-2013-0241

    Article  CAS  PubMed  Google Scholar 

  57. Hussein AM, Eldosoky M, El-Shafey M et al (2019) Effects of GLP-1 receptor activation on a pentylenetetrazole—kindling rat model. Brain Sci 9:108. https://doi.org/10.3390/brainsci9050108

    Article  CAS  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina (FAPESC 15/2021, Grant Number 2021TR001226), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (PIBIC/CNPq; PDE/CNPq #203013/2019-0), Governo do Estado de Santa Catarina (Programa UNIEDU), and Universidade Comunitária da Região de Chapecó (Unochapecó).

Author information

Authors and Affiliations

Authors

Contributions

Jefferson Pedroso, Sabrina Ester Schneider, Cássia Alves Lima-Rezende, Gean Pablo S. Aguiar, Liz Girardi Müller, J. Vladimir Oliveira, Angelo Piato and Anna Maria Siebel designed and conducted experiments, and analyzed data. Liz Girardi Müller, J. Vladimir Oliveira, Angelo Piato and Anna Maria Siebel wrote the main manuscript text.

Corresponding author

Correspondence to Anna Maria Siebel.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest. Graphical abstract was created with BioRender software, ©biorender.com.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pedroso, J., Schneider, S.E., Lima-Rezende, C.A. et al. Evaluation of Resveratrol and Piceatannol Anticonvulsant Potential in Adult Zebrafish (Danio rerio). Neurochem Res 47, 3250–3260 (2022). https://doi.org/10.1007/s11064-022-03656-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03656-3

Keywords

Navigation