Skip to main content

Advertisement

Log in

Micronized Resveratrol Shows Anticonvulsant Properties in Pentylenetetrazole-Induced Seizure Model in Adult Zebrafish

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Epilepsy affects 50 million people around the world, and the patients experience cognitive, psychological and social consequences. Despite the considerable quantity of antiepileptic drugs available, 30% of patients still suffer in seizure. Therefore, the advance in therapeutic alternatives is mandatory. Resveratrol has been attracting the attention of many researchers because of its pharmacological potential. However, despite its neuroprotective and anti-epileptic effects, clinical resveratrol use is impaired by its low bioavailability. Here, we applied the supercritical fluid micronization technology (SEDS) to overcome this deficit, and investigated the anticonvulsant potential of micronized resveratrol in a PTZ-induced seizure model in adult zebrafish (Danio rerio). SEDS permits obtaining significantly reduced particle size with a fine size distribution in comparison with the starting material. It can improve the pharmacotherapeutic efficacy. Our data showed that micronized resveratrol decreased the occurrence of the tonic–clonic seizure stage and slowed the development of the seizures in a similar manner of diazepam. Non-processed resveratrol was not able to protect the animals. Furthermore, diazepam decreased the locomotion and exploratory behavior. Differently from diazepam, the micronized resveratrol did not induce behavioral adverse events. In addition, our data showed that the PTZ-induced seizures increased the c-fos transcript levels following the neural excitability. However, the increase in c-fos levels was prevented by micronized resveratrol. In conclusion, our results demonstrate that the micronized resveratrol shows anticonvulsant effect, like the classical antiepileptic drug diazepam in a PTZ-induced seizure model. Excitingly, different from diazepam, micronized resveratrol did not provoke behavioral adverse events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Devinsky O, Vezzani A, O’Brien TJ et al (2018) Epilepsy. Nat Rev Dis Primers 4:18024

    Article  Google Scholar 

  2. Fisher RS, Acevedo C, Arzimanoglou A et al (2014) ILAE official report: a practical clinical definition of epilepsy. Epilepsia 55:475–482

    Article  Google Scholar 

  3. World Health Organization (2020) https://www.who.int/news-room/fact-sheets/detail/epilepsy

  4. Singh A, Trevick S (2016) The epidemiology of global epilepsy. Neurol Clin 34:837–847. https://doi.org/10.1016/j.ncl.2016.06.015

    Article  PubMed  Google Scholar 

  5. Berg AT (2006) Defining intractable epilepsy. Adv Neurol 97:5–10

    PubMed  Google Scholar 

  6. Berman AY, Motechin RA, Wiesenfeld MY, Holz MK (2017) The therapeutic potential of resveratrol: a review of clinical trials. npj Precis Oncol 1. doi:https://doi.org/10.1038/s41698-017-0038-6

  7. E. H. Siemann, L. L. Creasy concentration of the phytoalexin resveratrol in wine

  8. Mishra V, Shuai B, Kodali M, et al (2015) Resveratrol treatment after status epilepticus restrains neurodegeneration and abnormal neurogenesis with suppression of oxidative stress and inflammation. Sci Rep 5. doi:10.1038/srep17807

  9. Wu Z, Xu Q, Zhang L et al (2009) Protective effect of resveratrol against kainate-induced temporal lobe epilepsy in rats. Neurochem Res 34:1393–1400. https://doi.org/10.1007/s11064-009-9920-0

    Article  CAS  PubMed  Google Scholar 

  10. Cottart C-H, Nivet-Antoine V, Laguillier-Morizot C, Beaudeux J-L (2010) Resveratrol bioavailability and toxicity in humans. Mol Nutr Food Res 54:7–16. https://doi.org/10.1002/mnfr.200900437

    Article  CAS  PubMed  Google Scholar 

  11. Carrilho E, Tavares MCH, Lanças FM (2003) Fluidos supercríticos em química analítica. II. Cromatografia com fluido supercrítico: instrumentação. Química Nova 26:687–693. https://doi.org/10.1590/S0100-40422003000500012

    Article  CAS  Google Scholar 

  12. Aguiar GPS, Arcari BD, Chaves LMPC et al (2018) Micronization of trans-resveratrol by supercritical fluid: dissolution, solubility and in vitro antioxidant activity. Ind Crops Prod 112:1–5. https://doi.org/10.1016/j.indcrop.2017.11.008

    Article  CAS  Google Scholar 

  13. Kurniawansyah F, Quachie L, Mammucari R, Foster NR (2017) Improving the dissolution properties of curcumin using dense gas antisolvent technology. Int J Pharm 521:239–248. https://doi.org/10.1016/j.ijpharm.2017.02.018

    Article  CAS  PubMed  Google Scholar 

  14. Decui L, Garbinato CLL, Schneider SE et al (2020) Micronized resveratrol shows promising effects in a seizure model in zebrafish and signalizes an important advance in epilepsy treatment. Epilepsy Res 159:106243

    Article  CAS  Google Scholar 

  15. Aguiar GPS, Boschetto DL, Chaves LMPC et al (2016) Trans-resveratrol micronization by SEDS technique. Ind Crops Prod 89:350–355

    Article  CAS  Google Scholar 

  16. Dal Magro C, Aguiar GPS, Veneral JG et al (2017) Co-precipitation of trans -resveratrol in PHBV using solution enhanced dispersion by supercritical fluids technique. J Supercrit Fluids 127:182–190

    Article  Google Scholar 

  17. Bevilaqua F, Sachett A, Chitolina R et al (2020) A mixture of fipronil and fungicides induces alterations on behavioral and oxidative stress parameters in zebrafish. Ecotoxicology 29:140–147

    Article  CAS  Google Scholar 

  18. Siebel AM, Menezes FP, Capiotti KM et al (2015) Role of adenosine signaling on pentylenetetrazole-induced seizures in zebrafish. Zebrafish 12:127–136

    Article  CAS  Google Scholar 

  19. Bertoncello KT, Aguiar GPS, Oliveira JV, Siebel AM (2018) Micronization potentiates curcumin’s anti-seizure effect and brings an important advance in epilepsy treatment. Sci Rep 8. doi:10.1038/s41598-018-20897-x

  20. Siebel AM, Menezes FP, da Costa SI et al (2015) Rapamycin suppresses PTZ-induced seizures at different developmental stages of zebrafish. Pharmacol Biochem Behav 139:163–168

    Article  CAS  Google Scholar 

  21. Dzah CS, Duan Y, Zhang H et al (2020) Enhanced screening of key ultrasonication parameters: total phenol content and antioxidant activity assessment of Tartary buckwheat (Fagopyrum tataricum) water extract. Sep Sci Technol 55:3242–3251

    Article  CAS  Google Scholar 

  22. Harasym J, Satta E, Kaim U (2020) Ultrasound treatment of buckwheat grains impacts important functional properties of resulting flour. Molecules 25:3012

    Article  CAS  Google Scholar 

  23. Leclercq K, Afrikanova T, Langlois M et al (2015) Cross-species pharmacological characterization of the allylglycine seizure model in mice and larval zebrafish. Epilepsy Behav 45:53–63

    Article  Google Scholar 

  24. Tomaciello F, Leclercq K, Kaminski RM (2016) Resveratrol lacks protective activity against acute seizures in mouse models. Neurosci Lett 632:199–203

    Article  CAS  Google Scholar 

  25. Baraban SC, Taylor MR, Castro PA, Baier H (2005) Pentylenetetrazole induced changes in zebrafish behavior, neural activity and c-fos expression. Neuroscience 131:759–768

    Article  CAS  Google Scholar 

  26. van der Vaart M, Svoboda O, Weijts BG et al (2017) Mecp2 regulates tnfa during zebrafish embryonic development and acute inflammation. Dis Models Mech 10:1439–1451

    Article  Google Scholar 

  27. Tang R, Dodd A, Lai D et al (2007) Validation of zebrafish (Danio rerio) reference genes for quantitative Real-time RT-PCR normalization. Acta Biochim Biophys Sin 39:384–390

    Article  CAS  Google Scholar 

  28. Mei J, Zhang Q-Y, Li Z et al (2008) C1q-like inhibits p53-mediated apoptosis and controls normal hematopoiesis during zebrafish embryogenesis. Dev Biol 319:273–284

    Article  CAS  Google Scholar 

  29. Livak KJ, Schmittgen TD (2001) analysis of relative gene expression data using Real-Time Quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  Google Scholar 

  30. Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223

    Article  Google Scholar 

  31. Blardi P, De Lalla A, Volpi L, Di Perri T (1999) Stimulation of endogenous adenosine release by oral administration of quercetin and resveratrol in man. Drugs Exp Clin Res 25:105–110

    CAS  PubMed  Google Scholar 

  32. Gupta YK, Chaudhary G, Srivastava AK (2002) Protective effect of resveratrol against pentylenetetrazole-induced seizures and its modulation by an adenosinergic system. Pharmacology 65:170–174

    Article  CAS  Google Scholar 

  33. Boison D (2016) Adenosinergic signaling in epilepsy. Neuropharmacology 104:131–139

    Article  CAS  Google Scholar 

  34. Borea PA, Gessi S, Merighi S, Varani K (2016) Adenosine as a multi-signalling guardian angel in human diseases: When, where and how does it exert its protective effects? Trends Pharmacol Sci 37:419–434

    Article  CAS  Google Scholar 

  35. Dasgupta B, Milbrandt J (2007) Resveratrol stimulates AMP kinase activity in neurons. Proc Natl Acad Sci 104:7217–7222

    Article  CAS  Google Scholar 

  36. Fröjdö S, Cozzone D, Vidal H, Pirola L (2007) Resveratrol is a class IA phosphoinositide 3-kinase inhibitor. Biochem J 406:511–518

    Article  Google Scholar 

  37. Ghosh HS, McBurney M, Robbins PD (2010) SIRT1 Negatively regulates the mammalian target of rapamycin. PLoS ONE 5:e9199

    Article  Google Scholar 

  38. Liu M, Wilk SA, Wang A et al (2010) Resveratrol inhibits mTOR signaling by promoting the interaction between mTOR and DEPTOR. J Biol Chem 285:36387–36394

    Article  CAS  Google Scholar 

  39. Wong M (2013) A critical review of mTOR inhibitors and epilepsy: from basic science to clinical trials. Expert Rev Neurother 13:657–669

    Article  CAS  Google Scholar 

  40. Li Z, You Z, Li M et al (2017) Protective effect of resveratrol on the brain in a rat model of epilepsy. Neurosci Bull 33:273–280

    Article  CAS  Google Scholar 

  41. Lin X, Itoga CA, Taha S et al (2018) c-Fos mapping of brain regions activated by multi-modal and electric foot shock stress. Neurobiol Stress 8:92–102

    Article  Google Scholar 

  42. Chuang Y-C, Chen S-D, Jou S-B et al (2019) Sirtuin 1 regulates mitochondrial biogenesis and provides an endogenous neuroprotective mechanism against seizure-induced neuronal cell death in the hippocampus following status epilepticus. Int J Mol Sci 20:3588

    Article  CAS  Google Scholar 

  43. Hussein AM, Eldosoky M, El-Shafey M et al (2019) Effects of GLP-1 receptor activation on a pentylenetetrazole—kindling rat model. Brain Sci 9:108

    Article  CAS  Google Scholar 

  44. Wang R-F, Xue G-F, Hölscher C et al (2018) Post-treatment with the GLP-1 analogue liraglutide alleviate chronic inflammation and mitochondrial stress induced by Status epilepticus. Epilepsy Res 142:45–52

    Article  CAS  Google Scholar 

  45. Springer C, Nappe TM (2020) Anticonvulsants toxicity. In: StatPearls. StatPearls Publishing, Treasure Island (FL)

Download references

Funding

This work was supported by Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina (FAPESC 06/2017, Grant No. 2019TR55), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico - Brazil (PIBIC/CNPq), Estado de Santa Catarina and Universidade Comunitária da Região de Chapecó (Unochapecó).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Maria Siebel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almeida, E.R., Lima-Rezende, C.A., Schneider, S.E. et al. Micronized Resveratrol Shows Anticonvulsant Properties in Pentylenetetrazole-Induced Seizure Model in Adult Zebrafish. Neurochem Res 46, 241–251 (2021). https://doi.org/10.1007/s11064-020-03158-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-020-03158-0

Keywords

Navigation