Skip to main content

Advertisement

Log in

The Long Non-coding RNA SNHG12 Functions as a Competing Endogenous RNA to Modulate the Progression of Cerebral Ischemia/Reperfusion Injury

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Increasing research has proved that long non-coding RNAs (lncRNAs) play a critical role in a variety of biological processes. However, their functions in cerebral ischemia are still unclear. We found that the small nucleolar RNA host gene 12 (SNHG12) is a new type of lncRNA induced by ischemia/reperfusion. Here, we show that the expression of SNHG12 was upregulated in the brain tissue of mice exposed to middle cerebral artery occlusion/reperfusion (MCAO/R) and primary mouse cerebral cortex neurons treated with oxygen-glucose deprivation/reoxygenation (OGD/R). Mechanistically, SNHG12 knockdown resulted in larger infarct sizes and worse neurological scores in MCAO/R mice. Consistent with the in vivo results, SNHG12 upregulation significantly increased the viability and prevented apoptosis of neurons cultured under OGD/R conditions. In addition, we found that SNHG12 acts as a competing endogenous RNA (ceRNA) with microRNA (miR)-136-5p, thereby regulating the inhibition of its endogenous target Bcl-2. Moreover, SNHG12 was proven to target miR-136-5p, increasing Bcl-2 expression, which finally led to the activation of PI3K/AKT signaling. In conclusion, we demonstrated that SNHG12 acts as a ceRNA of miR-136-5p, thereby targets and regulates the expression of Bcl-2, which attenuates cerebral ischemia/reperfusion injury via activation of the PI3K/AKT pathway. This knowledge helps to better understand the pathophysiology of cerebral ischemic stroke and may provide new treatment options for this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Sommer JC (2017) Ischemic stroke: experimental models and reality. Acta Neuropathol 133(2):245–261

    Article  PubMed  PubMed Central  Google Scholar 

  2. Maingard J et al (2019) Endovascular treatment of acute ischemic stroke. Curr Treat Options Cardiovasc Med 21(12):1–20

    Article  Google Scholar 

  3. Venkat P et al (2017) Cell-based and pharmacological neurorestorative therapies for ischemic stroke. Neuropharmacology 134:310–322

    Article  PubMed  PubMed Central  Google Scholar 

  4. Anderson CS et al (2018) Low-dose versus standard-dose intravenous Alteplase in Acute Ischemic Stroke. N Engl J Med 374(24):2313–2323

    Article  Google Scholar 

  5. Colivicchi F et al (2016) Discontinuation of statin therapy and clinical outcome after ischemic stroke. Stroke 38(10):2652–2657

    Article  Google Scholar 

  6. Fesenko IA, Kirov IV, Filippova AA (2018) Impact of noncoding part of the genome on the proteome plasticity of the eukaryotic cell. Russ J Bioorg Chem 44(4):397–402

    Article  CAS  Google Scholar 

  7. Takemata N, Ohta K (2017) Role of non-coding RNA transcription around gene regulatory elements in transcription factor recruitment. RNA Biol 14(1):1–5

    Article  PubMed  Google Scholar 

  8. Mercer TR, Mattick JS (2013) Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct Mol Biol 20(3):300–307

    Article  CAS  PubMed  Google Scholar 

  9. Tao H, Yang JJ, Shi KH (2015) Non-coding RNAs as direct and indirect modulators of epigenetic mechanism regulation of cardiac fibrosis. Expert Opin Ther Targets 79(5):1–10

    Google Scholar 

  10. Hauptman N, Glava D (2013) Long non-coding RNA in cancer. Int J Mol Sci 14(3):4655–4669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen Q et al (2019) Overexpression of SNHG12 regulates the viability and invasion of renal cell carcinoma cells through modulation of HIF1α. Cancer Cell Int 19(1):1–12

    Article  Google Scholar 

  12. Zhang J et al (2016) Altered Long Non-coding RNA Transcriptomic Profiles in Brain Microvascular Endothelium afterCerebral Ischemia. Experimental Neurology 3(277):16–170

    Google Scholar 

  13. Sances S et al (2018) Human iPSC-derived endothelial cells and microengineered organ-Chip enhance neuronal development. Stem cell reports 10(4):1222–1236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang Q, Liu X, Zhu R (2019) Long noncoding RNAs as diagnostic and therapeutic targets for ischemic stroke. Curr Pharm Des 25(10):1115–1121

    Article  CAS  PubMed  Google Scholar 

  15. Tiedt S, Dichgans M (2018) Role of non-coding RNAs in stroke. Stroke 49(12):3098–3106

    Article  PubMed  Google Scholar 

  16. Karapetyan AR et al (2013) Regulatory roles for long ncRNA and mRNA. Cancers 5(2):462–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang H et al (2016) Comprehensive analysis of aberrantly expressed profiles of lncRNAs and miRNAs with associated ceRNA network in muscle-invasive bladder cancer. Oncotarget 7(52):86174–86185

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhang K et al (2016) Identification and functional characterization of lncRNAs acting as ceRNA involved in the malignant progression of glioblastoma multiforme. Oncol Rep 36(5):2911–2925

    Article  CAS  PubMed  Google Scholar 

  19. Wei C et al (2017) Differentially expressed lncRNAs and miRNAs with associated ceRNA networks in aged mice with postoperative cognitive dysfunction. Oncotarget 8(34):55901–55914

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kartha RV, Subramanian S (2014) Competing endogenous RNAs (ceRNAs): new entrants to the intricacies of gene regulation. Front Genet 5:8–8

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhong Y et al (2018) Circular RNAs function as ceRNAs to regulate and control human cancer progression. Mol Cancer 17(1):79–79

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lan T et al (2017) Long non-coding RNA small nucleolar RNA host gene 12 (SNHG12) promotes tumorigenesis and metastasis by targeting miR-199a/b-5p in hepatocellular carcinoma. J Exp Clin Cancer Res 36(1):11–11

    Article  PubMed  PubMed Central  Google Scholar 

  23. Deng G et al (2018) miR-136-5p regulates the inflammatory response by targeting the IKKβ/NF-κB/A20 pathway after spinal cord injury. Cell Physiol Biochem 50:512–524

    Article  CAS  PubMed  Google Scholar 

  24. Peng X et al (2017) The effects of miR-136-5p-mediated regulation of A20 in astrocytes from cultured spinal cord cultured cells in vitro. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol 41(4):1596–1604

    Article  CAS  Google Scholar 

  25. Ding H et al (2017) Downregulation of miR-136-5p in hepatocellular carcinoma and its clinicopathological significance. Mol Med Rep 16(4):5393–5405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Delbridge ARD et al (2016) Thirty years of BCL-2: translating cell death discoveries into novel cancer therapies. Nat Rev Cancer 16(2):99–109

    Article  CAS  PubMed  Google Scholar 

  27. Brocheriou V et al (2015) Cardiac functional improvement by a human Bcl-2 transgene in a mouse model of ischemia/reperfusion injury. J Gene Med 2(5):326–333

    Article  Google Scholar 

  28. Chiang-Ting C et al (2015) Adenovirus-mediated bcl-2 gene transfer inhibits renal ischemia/reperfusion induced tubular oxidative stress and apoptosis. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg 5(6):1194–1203

    Google Scholar 

  29. Zeng J et al (2019) Metformin protects against oxidative stress injury induced by ischemia/reperfusion via regulation of the lncRNA-H19/miR-148a-3p/Rock2 axis. Oxid Med Cell Longev 2019:1–18

    Article  Google Scholar 

  30. Zhang H et al (2017) Isosteviol sodium protects against permanent cerebral ischemia injury in mice via inhibition of NF-κB-mediated inflammatory and apoptotic responses. J Stroke Cerebrovasc Dis 26(11):2603–2614

    Article  PubMed  Google Scholar 

  31. Zhang H et al (2018) Isosteviol sodium inhibits astrogliosis after cerebral ischemia/reperfusion injury in rats. Biol Pharm Bull 41(4):575–584

    Article  CAS  PubMed  Google Scholar 

  32. Zhang H et al (2019) Isosteviol sodium protects against ischemic stroke by modulating microglia/macrophage polarization via disruption of GAS5/miR-146a-5p sponge. Sci Rep 9(1):12221

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zhang H et al (2018) Neuroprotective effects of isosteviol sodium through increasing CYLD by the downregulation of miRNA-181b. Brain Res Bull 140:392–401

    Article  CAS  PubMed  Google Scholar 

  34. Zhong KL et al (2019) Isosteviol sodium protects neural cells against hypoxia-induced apoptosis through inhibiting MAPK and NF-kappaB pathways. J Stroke Cerebrovasc Dis 28(1):175–184

    Article  PubMed  Google Scholar 

  35. Zhang, Liang, Wang (2014) Formononetin mediates neuroprotection against cerebral ischemia/reperfusion in rats via downregulation of the Bax/Bcl-2 ratio and upregulation PI3K/Akt signaling pathway. J Neurol Sci Off Bull World Fed Neurol 344(1/2):100–104

    Google Scholar 

  36. Lin X et al (2021) Bone marrow-derived mesenchymal stem cells improve post-ischemia neurological function in rats via the PI3K/AKT/GSK-3β/CRMP-2 pathway. Mol Cell Biochem 476(5):2193–2201

    Article  CAS  PubMed  Google Scholar 

  37. Ruan W et al (2016) Long non-coding RNA small nucleolar RNA host gene 12 (SNHG12) promotes cell proliferation and migration by upregulating angiomotin gene expression in human osteosarcoma cells. Tumour Biol 37(3):4065–4073

    Article  CAS  PubMed  Google Scholar 

  38. Wu Z et al (2017) Erratum to: LncRNA-N1LR enhances neuroprotection against ischemic stroke probably by inhibiting p53 phosphorylation. Mol Neurobiol 54(10):7670–7685

    Article  CAS  PubMed  Google Scholar 

  39. Wang P et al (2017) LncRNA SNHG12 contributes to multidrug resistance through activating the MAPK/slug pathway by sponging miR-181a in non-small cell lung cancer. Oncotarget 8(48):84086–84101

    Article  PubMed  PubMed Central  Google Scholar 

  40. Jin R et al (2017) MiR-136 controls neurocytes apoptosis by regulating tissue inhibitor of metalloproteinases-3 in spinal cord ischemic injury. Biomed Pharmacother 94:47–54

    Article  CAS  PubMed  Google Scholar 

  41. Chen W et al (2014) MiR-136 targets E2F1 to reverse cisplatin chemosensitivity in glioma cells. J Neurooncol 120(1):43–53

    Article  CAS  PubMed  Google Scholar 

  42. Chen Y et al (2018) Bcl-2 protects TK6 cells against hydroquinone-induced apoptosis through PARP-1 cytoplasm translocation and stabilizing mitochondrial membrane potential. Environ Mol Mutagen 59(1):49–59

    Article  CAS  PubMed  Google Scholar 

  43. Zimmermann AK et al (2007) Glutathione binding to the Bcl-2 homology-3 domain groove: a molecular basis for Bcl-2 antioxidant function at mitochondria. J Biol Chem 282(40):29296–29304

    Article  CAS  PubMed  Google Scholar 

  44. Su F et al (2016) Bcl-2–associated athanogene 3 protects the heart from ischemia/reperfusion injury. Jci Insight 1(19):e90931

    Article  PubMed  PubMed Central  Google Scholar 

  45. Liang J et al (2017) Attenuation of low ambient temperature-induced myocardial hypertrophy by atorvastatin via promoting Bcl-2 expression. Cell Physiol Biochem 41(1):286–295

    Article  CAS  PubMed  Google Scholar 

  46. Li J et al (2018) Influences of remifentanil on myocardial ischemia-reperfusion injury and the expressions of Bax and Bcl-2 in rats. Eur Rev Med Pharmacol Sci 22(24):8951

    CAS  PubMed  Google Scholar 

  47. Isaka Y et al (2009) Bcl-2 protects tubular epithelial cells from ischemia/reperfusion injury by dual mechanisms. Transpl Proc 41(1):52–54

    Article  CAS  Google Scholar 

  48. Hsu YY et al (2010) KMUP-1 attenuates serum deprivation-induced neurotoxicity in SH-SY5Y cells: roles of PKG, PI3K/Akt and Bcl-2/Bax pathways. Toxicology 268(1–2):46–54

    Article  CAS  PubMed  Google Scholar 

  49. Chen S et al (2012) Salidroside improves behavioral and histological outcomes and reduces apoptosis viaPI3K/Akt signaling after experimental traumatic brain injury. PLOS ONE 7(9)

  50. Liang K et al (2014) Formononetin mediates neuroprotection against cerebral ischemia/reperfusion in rats via downregulation of the Bax/Bcl-2 ratio and upregulation PI3K/Akt signaling pathway. J Neurol Sci 344(1–2):100–104

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Institute of Biomedical and Pharmaceutical Sciences of Guangdong University of Technology for invaluable assistance in conducting these experiments, and the other members of the research group for useful discussion in preparing this manuscript.

Funding

This study was supported by the China Postdoctoral Science Foundation (2019M652826), Guangdong Natural Science Foundation of China (2021A1515011064) and the National Natural Science Foundation of China (31601089).

Author information

Authors and Affiliations

Authors

Contributions

Z.H. designed and performed the experiments, analyzed and interpreted the data, and wrote the manuscript. L.Y., L.M., Z.T. and P.G. helped with data collection and interpretation and contributed to critical manuscript revision. S.X. conceived the study, obtained funding, and critically revised the manuscript. All the authors participated in the experiment performance and data analysis. All authors read, revised, and approved the final manuscript.

Corresponding author

Correspondence to Xiaoou Sun.

Ethics declarations

Ethics Approval and Consent to Participate

This experimental study was approved by the Animal Protection and Utilization Committee of the Guangdong Pharmaceutical University.

Consent for Publication

All authors agree to the publication of this manuscript.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Liu, Y., Li, M. et al. The Long Non-coding RNA SNHG12 Functions as a Competing Endogenous RNA to Modulate the Progression of Cerebral Ischemia/Reperfusion Injury. Mol Neurobiol 59, 1073–1087 (2022). https://doi.org/10.1007/s12035-021-02648-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02648-8

Keywords

Navigation