Skip to main content

Advertisement

Log in

SAHA Improves Depressive Symptoms, Cognitive Impairment and Oxidative Stress: Rise of a New Antidepressant Class

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Depression is a disabling psychiatric disorder affecting millions of people all around the world. Under current therapeutic choices, a portion of patients are not responsive, have relapses, or experience cognitive side effects. Hence, the present study aimed to find other antidepressant compounds lacking the mentioned deficiency. Since epigenetic regulations have attracted more attention in etiology of depression, histone deacetylase (HDAC) inhibitors have gained more importance due to their possible antidepressant activity. We selected a promising member of HDAC inhibitors named suberanilohydroxamic acid (SAHA) to evaluate its antidepressant properties. Early life stress disarrays many neurodevelopmental factors and consequently, leads to the destruction of hippocampus and prefrontal cortex synapses as areas highly related to emotion and memory so that any destruction on them can cause lasting impairments. For that reason, we used maternal separation (MS) paradigm to investigate depression in male mice. To compare the efficacy of SAHA with current treatment options, we also treated a group of MS mice with fluoxetine (FLX) as first-line pharmacological drugs of depression. The results demonstrated that depressive-like behavior, cognitive function and inflammatory response of MS mice were attenuated with SAHA. Our data showed that, besides anti-depressant and cognition-boosting effects similar to FLX, SAHA counteracted inflammatory response caused by depression and reversed the coenzyme Q10 (CoQ10) level in hippocampus. SAHA’s effect on alleviating depressive behavior was accompanied with memory enhancement and hippocampus biochemical tests. These findings may propose SAHA as another therapeutic option for depressive symptoms, especially with comorbid cognitive impairment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Smith K (2014) Mental health: a world of depression. Nat News 515:180

    Article  CAS  Google Scholar 

  2. Kessler RC, Berglund P, Demler O, Jin R, Merikangas KR, Walters EE (2005) Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry 62:593–602

    Article  PubMed  Google Scholar 

  3. Crown WH, Finkelstein S, Berndt ER, Ling D, Poret AW, Rush AJ, Russell JM (2002) The impact of treatment-resistant depression on health care utilization and costs. J Clin Psychiatry 63:963–971

    Article  PubMed  Google Scholar 

  4. Sun H, Kennedy PJ, Nestler EJ (2013) Epigenetics of the depressed brain: role of histone acetylation and methylation. Neuropsychopharmacology 38:124

    Article  CAS  PubMed  Google Scholar 

  5. Heim C, Binder EB (2012) Current research trends in early life stress and depression: review of human studies on sensitive periods, gene–environment interactions, and epigenetics. Exp Neurol 233:102–111

    Article  PubMed  Google Scholar 

  6. Roth TL, Lubin FD, Funk AJ, Sweatt JD (2009) Lasting epigenetic influence of early-life adversity on the BDNF gene. Biol Psychiat 65:760–769

    Article  CAS  PubMed  Google Scholar 

  7. McGowan PO, Suderman M, Sasaki A, Huang TC, Hallett M, Meaney MJ, Szyf M (2011) Broad epigenetic signature of maternal care in the brain of adult rats. PLoS ONE 6:e14739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vaiserman AM (2015) Epigenetic programming by early-life stress: evidence from human populations. Dev Dyn 244:254–265

    Article  CAS  PubMed  Google Scholar 

  9. Redlich R, Opel N, Bürger C, Dohm K, Grotegerd D, Förster K, Zaremba D, Meinert S, Repple J, Enneking V (2018) The limbic system in youth depression: brain structural and functional alterations in adolescent in-patients with severe depression. Neuropsychopharmacology 43:546

    Article  PubMed  Google Scholar 

  10. Kim JJ, Song EY, Kim JJ, Song EY, Kosten TA (2006) Stress effects in the hippocampus: synaptic plasticity and memory. Stress 9:1–11

    Article  CAS  PubMed  Google Scholar 

  11. Krugers HJ, Arp JM, Xiong H, Kanatsou S, Lesuis SL, Korosi A, Joels M, Lucassen PJ (2017) Early life adversity: lasting consequences for emotional learning. Neurobiol Stress 6:14–21

    Article  PubMed  Google Scholar 

  12. Peleg S, Sananbenesi F, Zovoilis A, Burkhardt S, Bahari-Javan S, Agis-Balboa RC, Cota P, Wittnam JL, Gogol-Doering A, Opitz L (2010) Altered histone acetylation is associated with age-dependent memory impairment in mice. Science 328:753–756

    Article  CAS  PubMed  Google Scholar 

  13. Mews P, Donahue G, Drake AM, Luczak V, Abel T, Berger SL (2017) Acetyl-CoA synthetase regulates histone acetylation and hippocampal memory. Nature 546:381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bird CM, Burgess N (2008) The hippocampus and memory: insights from spatial processing. Nat Rev Neurosci 9:182

    Article  CAS  PubMed  Google Scholar 

  15. Fortin NJ, Agster KL, Eichenbaum HB (2002) Critical role of the hippocampus in memory for sequences of events. Nat Neurosci 5:458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Levenson JM, O’Riordan KJ, Brown KD, Trinh MA, Molfese DL, Sweatt JD (2004) Regulation of histone acetylation during memory formation in the hippocampus. J Biol Chem 279:40545–40559

    Article  CAS  PubMed  Google Scholar 

  17. Sharma S, Taliyan R (2016) Epigenetic modifications by inhibiting histone deacetylases reverse memory impairment in insulin resistance induced cognitive deficit in mice. Neuropharmacology 105:285–297

    Article  CAS  PubMed  Google Scholar 

  18. Kilgore M, Miller CA, Fass DM, Hennig KM, Haggarty SJ, Sweatt JD, Rumbaugh G (2010) Inhibitors of class 1 histone deacetylases reverse contextual memory deficits in a mouse model of Alzheimer’s disease. Neuropsychopharmacology 35:870

    Article  CAS  PubMed  Google Scholar 

  19. Alarcón JM, Malleret G, Touzani K, Vronskaya S, Ishii S, Kandel ER, Barco A (2004) Chromatin acetylation, memory, and LTP are impaired in CBP+/− mice: a model for the cognitive deficit in Rubinstein-Taybi syndrome and its amelioration. Neuron 42:947–959

    Article  PubMed  Google Scholar 

  20. Kandel ER (2012) The molecular biology of memory: cAMP, PKA, CRE, CREB-1, CREB-2, and CPEB. Mol brain 5:1–12

    Article  Google Scholar 

  21. Schroeder M, Krebs MO, Bleich S, Frieling H (2010) Epigenetics and depression: current challenges and new therapeutic options. Curr Opin Psychiatry 23:588–592

    Article  PubMed  Google Scholar 

  22. Fuchikami M, Yamamoto S, Morinobu S, Okada S, Yamawaki Y, Yamawaki S (2016) The potential use of histone deacetylase inhibitors in the treatment of depression. Prog Neuropsychopharmacol Biol Psychiatry 64:320–324

    Article  CAS  PubMed  Google Scholar 

  23. Schroeder M, Hillemacher T, Bleich S, Frieling H (2012) The epigenetic code in depression: implications for treatment. Clin Pharmacol Ther 91:310–314

    Article  CAS  PubMed  Google Scholar 

  24. Uddin M, Koenen K, Aiello A, Wildman D, de Los SR, Galea S (2011) Epigenetic and inflammatory marker profiles associated with depression in a community-based epidemiologic sample. Psychol Med 41:997–1007

    Article  CAS  PubMed  Google Scholar 

  25. Tobe EH (2013) Mitochondrial dysfunction, oxidative stress, and major depressive disorder. Neuropsychiatric Dis Treat 9:567

    Article  Google Scholar 

  26. Allen J, Romay-Tallon R, Brymer KJ, Caruncho HJ, Kalynchuk LE (2018) Mitochondria and mood: mitochondrial dysfunction as a key player in the manifestation of depression. Front Neurosci 12:386

    Article  PubMed  PubMed Central  Google Scholar 

  27. Sahay A, Hen R (2007) Adult hippocampal neurogenesis in depression. Nat Neurosci 10:1110

    Article  CAS  PubMed  Google Scholar 

  28. Sato H, Takahashi T, Sumitani K, Takatsu H, Urano S (2010) Glucocorticoid generates ROS to induce oxidative injury in the hippocampus, leading to impairment of cognitive function of rats. J Clin Biochem Nutr 47:224–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Manikandan S, Padma MK, Srikumar R, Parthasarathy NJ, Muthuvel A, Devi RS (2006) Effects of chronic noise stress on spatial memory of rats in relation to neuronal dendritic alteration and free radical-imbalance in hippocampus and medial prefrontal cortex. Neurosci Lett 399:17–22

    Article  CAS  PubMed  Google Scholar 

  30. Lenaz G, Fato R, Formiggini G, Genova ML (2007) The role of Coenzyme Q in mitochondrial electron transport. Mitochondrion 7:S8–S33

    Article  CAS  PubMed  Google Scholar 

  31. Shults CW (2003) Coenzyme Q10 in neurodegenerative diseases. Curr Med Chem 10:1917–1921

    Article  CAS  PubMed  Google Scholar 

  32. DiMauro S, Schon EA (2003) Mitochondrial respiratory-chain diseases. N Engl J Med 348:2656–2668

    Article  CAS  PubMed  Google Scholar 

  33. Maes M, Mihaylova I, Kubera M, Uytterhoeven M, Vrydags N, Bosmans E (2009) Lower plasma Coenzyme Q 10 in depression: a marker for treatment resistance and chronic fatigue in depression and a risk factor to cardiovascular disorder in that illness. Neuroendocrinol Lett 30:462–469

    CAS  PubMed  Google Scholar 

  34. Aboul-Fotouh S (2013) Coenzyme Q10 displays antidepressant-like activity with reduction of hippocampal oxidative/nitrosative DNA damage in chronically stressed rats. Pharmacol Biochem Behav 104:105–112

    Article  CAS  PubMed  Google Scholar 

  35. Desbonnet L, Garrett L, Clarke G, Kiely B, Cryan JF, Dinan TG (2010) Effects of the probiotic Bifidobacterium infantis in the maternal separation model of depression. Neuroscience 170:1179–1188

    Article  CAS  PubMed  Google Scholar 

  36. Amini-Khoei H, Mohammadi-Asl A, Amiri S, Hosseini M-J, Momeny M, Hassanipour M, Rastegar M, Haj-Mirzaian A, Haj-Mirzaian A, Sanjarimoghaddam H (2017) Oxytocin mitigated the depressive-like behaviors of maternal separation stress through modulating mitochondrial function and neuroinflammation. Prog Neuropsychopharmacol Biol Psychiatry 76:169–178

    Article  CAS  PubMed  Google Scholar 

  37. Council NR (2010) Guide for the care and use of laboratory animals. National Academies Press, Washington, D.C.

    Google Scholar 

  38. Uchida S, Hara K, Kobayashi A, Otsuki K, Yamagata H, Hobara T, Suzuki T, Miyata N, Watanabe Y (2011) Epigenetic status of Gdnf in the ventral striatum determines susceptibility and adaptation to daily stressful events. Neuron 69:359–372

    Article  CAS  PubMed  Google Scholar 

  39. Schroeder FA, Lewis MC, Fass DM, Wagner FF, Zhang Y-L, Hennig KM, Gale J, Zhao W-N, Reis S, Barker DD (2013) A selective HDAC 1/2 inhibitor modulates chromatin and gene expression in brain and alters mouse behavior in two mood-related tests. PLoS ONE 8:e71323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chiechio S, Zammataro M, Morales ME, Busceti CL, Drago F, Gereau RW, Copani A, Nicoletti F (2009) Epigenetic modulation of mGlu2 receptors by histone deacetylase inhibitors in the treatment of inflammatory pain. Mol Pharmacol 75:1014–1020

    Article  CAS  PubMed  Google Scholar 

  41. Meylan EM, Halfon O, Magistretti PJ, Cardinaux J-R (2016) The HDAC inhibitor SAHA improves depressive-like behavior of CRTC1-deficient mice: possible relevance for treatment-resistant depression. Neuropharmacology 107:111–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Katz RJ, Roth KA, Carroll BJ (1981) Acute and chronic stress effects on open field activity in the rat: implications for a model of depression. Neurosci Biobehav Rev 5:247–251

    Article  CAS  PubMed  Google Scholar 

  43. Ducottet C, Griebel G, Belzung C (2003) Effects of the selective nonpeptide corticotropin-releasing factor receptor 1 antagonist antalarmin in the chronic mild stress model of depression in mice. Prog Neuropsychopharmacol Biol Psychiatry 27:625–631

    Article  CAS  PubMed  Google Scholar 

  44. Amiri S, Haj-Mirzaian A, Momeny M, Amini-Khoei H, Rahimi-Balaei M, Poursaman S, Rastegar M, Nikoui V, Mokhtari T, Ghazi-Khansari M (2017) Streptozotocin induced oxidative stress, innate immune system responses and behavioral abnormalities in male mice. Neuroscience 340:373–383

    Article  CAS  PubMed  Google Scholar 

  45. Porsolt R, Bertin A, Jalfre M (1977) Behavioral despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther 229:327–336

    CAS  PubMed  Google Scholar 

  46. Sadeghi M, Peeri M, Hosseini M-J (2016) Adolescent voluntary exercise attenuated hippocampal innate immunity responses and depressive-like behaviors following maternal separation stress in male rats. Physiol Behav 163:177–183

    Article  CAS  PubMed  Google Scholar 

  47. Kordjazy N, Haj-Mirzaian A, Amiri S, Ostadhadi S, Amini-Khoei H, Dehpour AR (2016) Involvement of N-methyl-d-aspartate receptors in the antidepressant-like effect of 5-hydroxytryptamine 3 antagonists in mouse forced swimming test and tail suspension test. Pharmacol Biochem Behav 141:1–9

    Article  CAS  PubMed  Google Scholar 

  48. Steru L, Chermat R, Thierry B, Simon P (1985) The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology 85:367–370

    Article  CAS  PubMed  Google Scholar 

  49. Dellu F, Mayo W, Cherkaoui J, Le Moal M, Simon H (1992) A two-trial memory task with automated recording: study in young and aged rats. Brain Res 588:132–139

    Article  CAS  PubMed  Google Scholar 

  50. Allami N, Javadi-Paydar M, Rayatnia F, Sehhat K, Rahimian R, Norouzi A, Dehpour AR (2011) Suppression of nitric oxide synthesis by L-NAME reverses the beneficial effects of pioglitazone on scopolamine-induced memory impairment in mice. Eur J Pharmacol 650:240–248

    Article  CAS  PubMed  Google Scholar 

  51. Antunes M, Biala G (2012) The novel object recognition memory: neurobiology, test procedure, and its modifications. Cogn Process 13:93–110

    Article  CAS  Google Scholar 

  52. Yiin S-J, Chern C-L, Sheu J-Y, Lin T-H (1999) Cadmium induced lipid peroxidation in rat testes and protection by selenium. Biometals 12:353–359

    Article  CAS  PubMed  Google Scholar 

  53. Sonei N, Amiri S, Jafarian I, Anoush M, Rahimi-Balaei M, Bergen H, Haj-Mirzaian A, Hosseini M-J (2017) Mitochondrial dysfunction bridges negative affective disorders and cardiomyopathy in socially isolated rats: pros and cons of fluoxetine. World J Biol Psychiatry 18:39–53

    Article  PubMed  Google Scholar 

  54. Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239:70–76

    Article  CAS  PubMed  Google Scholar 

  55. Andalib S, Mashhadi-Mousapour M, Bijani S, Hosseini M-J (2019) Coenzyme Q 10 alleviated behavioral dysfunction and bioenergetic function in an animal model of depression. Neurochem Res 44:1182–1191

    Article  CAS  PubMed  Google Scholar 

  56. Dizaji R, Sharafi A, Pourahmad J, Vatanpour S, Dinmohammadif H, Vatanpour H, Hosseini M-J (2020) Correlation of Coenzyme Q10 and nutrient sensor gene expression in AKI induced by Hemiscorpius lepturus envenomation. Toxicon

  57. Coelho JE, Alves P, Canas PM, Valadas JS, Shmidt T, Batalha VL, Ferreira DG, Ribeiro JA, Bader M, Cunha RA (2014) Overexpression of adenosine A2A receptors in rats: effects on depression, locomotion, and anxiety. Front Psychiatry 5:67

    Article  PubMed  PubMed Central  Google Scholar 

  58. Cryan JF, Holmes A (2005) The ascent of mouse: advances in modelling human depression and anxiety. Nat Rev Drug Discov 4:775

    Article  CAS  PubMed  Google Scholar 

  59. Amiri S, Amini-Khoei H, Haj-Mirzaian A, Rahimi-Balaei M, Naserzadeh P, Dehpour A, Mehr SE, Hosseini M-J (2015) Tropisetron attenuated the anxiogenic effects of social isolation by modulating nitrergic system and mitochondrial function. Biochim Biophys Acta BBA 1850:2464–2475

    Article  CAS  PubMed  Google Scholar 

  60. Hayase T (2013) Working memory-and anxiety-related behavioral effects of repeated nicotine as a stressor: the role of cannabinoid receptors. BMC Neurosci 14:20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bevins RA, Besheer J (2006) Object recognition in rats and mice: a one-trial non-matching-to-sample learning task to study’recognition memory’. Nat Protoc 1:1306–1311

    Article  PubMed  Google Scholar 

  62. George ED, Bordner KA, Elwafi HM, Simen AA (2010) Maternal separation with early weaning: a novel mouse model of early life neglect. BMC Neurosci 11:1–14

    Article  Google Scholar 

  63. Amini-Khoei H, Amiri S, Shirzadian A, Haj-Mirzaian A, Alijanpour S, Rahimi-Balaei M, Mohammadi-Asl A, Hassanipour M, Mehr SE, Dehpour AR (2015) Experiencing neonatal maternal separation increased the seizure threshold in adult male mice: involvement of the opioid system. Epilepsy Behav 52:37–41

    Article  PubMed  Google Scholar 

  64. Nishi M, Horii-Hayashi N, Sasagawa T (2014) Effects of early life adverse experiences on the brain: implications from maternal separation models in rodents. Front Neurosci 8:166

    Article  PubMed  PubMed Central  Google Scholar 

  65. Duman CH, Duman RS (2015) Spine synapse remodeling in the pathophysiology and treatment of depression. Neurosci Lett 601:20–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Duman RS (2014) Pathophysiology of depression and innovative treatments: remodeling glutamatergic synaptic connections. Dialogues Clin Neurosci 16:11

    Article  PubMed  PubMed Central  Google Scholar 

  67. Duman RS, Aghajanian GK, Sanacora G, Krystal JH (2016) Synaptic plasticity and depression: new insights from stress and rapid-acting antidepressants. Nat Med 22:238–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Duman RS, Heninger GR, Nestler EJ (1997) A molecular and cellular theory of depression. Arch Gen Psychiatry 54:597–606

    Article  CAS  PubMed  Google Scholar 

  69. Roger D, Najarian B (1998) The relationship between emotional rumination and cortisol secretion under stress. Personality Individ Differ 24:531–538

    Article  Google Scholar 

  70. Duman RS, Li N (2012) A neurotrophic hypothesis of depression: role of synaptogenesis in the actions of NMDA receptor antagonists. Philos Trans Royal Soc B Biol Sci 367:2475–2484

    Article  CAS  Google Scholar 

  71. Anderson G, Berk M, Dean O, Moylan S, Maes M (2014) Role of immune-inflammatory and oxidative and nitrosative stress pathways in the etiology of depression: therapeutic implications. CNS Drugs 28:1–10

    Article  CAS  PubMed  Google Scholar 

  72. Gillman P (2005) Monoamine oxidase inhibitors, opioid analgesics and serotonin toxicity. Br J Anaesth 95:434–441

    Article  CAS  PubMed  Google Scholar 

  73. Culpepper L, Muskin PR, Stahl SM (2015) Major depressive disorder: understanding the significance of residual symptoms and balancing efficacy with tolerability. Am J Med 128:S1–S15

    Article  PubMed  Google Scholar 

  74. Abdallah CG, Sanacora G, Duman RS, Krystal JH (2018) The neurobiology of depression, ketamine and rapid-acting antidepressants: is it glutamate inhibition or activation? Pharmacol Ther 190:148–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Caudill MM, Hunter AM, Cook IA, Leuchter AF (2015) The antidepressant treatment response index as a predictor of reboxetine treatment outcome in major depressive disorder. Clin EEG Neurosci 46:277–284

    Article  PubMed  Google Scholar 

  76. Catena-Dell’Osso M, Bellantuono C, Consoli G, Baroni S, Rotella F, Marazziti D (2011) Inflammatory and neurodegenerative pathways in depression: a new avenue for antidepressant development? Curr Med Chem 18:245–255

    Article  PubMed  Google Scholar 

  77. Lopresti AL, Hood SD, Drummond PD (2013) A review of lifestyle factors that contribute to important pathways associated with major depression: diet, sleep and exercise. J Affect Disord 148:12–27

    Article  PubMed  Google Scholar 

  78. Levine A, Worrell TR, Zimnisky R, Schmauss C (2012) Early life stress triggers sustained changes in histone deacetylase expression and histone H4 modifications that alter responsiveness to adolescent antidepressant treatment. Neurobiol Dis 45:488–498

    Article  CAS  PubMed  Google Scholar 

  79. Citraro R, Leo A, Santoro M, D’agostino G, Constanti A, Russo E (2017) Role of histone deacetylases (HDACs) in epilepsy and epileptogenesis. Curr Pharm Design 23:5546–5562

    Article  CAS  Google Scholar 

  80. De Pablo JM, Parra A, Segovia S, Guillamón A (1989) Learned immobility explains the behavior of rats in the forced swimming test. Physiol Behav 46:229–237

    Article  PubMed  Google Scholar 

  81. Cryan JF, Mombereau C, Vassout A (2005) The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice. Neurosci Biobehav Rev 29:571–625

    Article  CAS  PubMed  Google Scholar 

  82. Brocardo PS, Pandolfo P, Takahashi RN, Rodrigues ALS, Dafre AL (2005) Antioxidant defenses and lipid peroxidation in the cerebral cortex and hippocampus following acute exposure to malathion and/or zinc chloride. Toxicology 207:283–291

    Article  CAS  PubMed  Google Scholar 

  83. Misztak P, Pańczyszyn-Trzewik P, Sowa-Kućma M (2018) Histone deacetylases (HDACs) as therapeutic target for depressive disorders. Pharmacol Rep 70:398–408

    Article  CAS  PubMed  Google Scholar 

  84. Mohammadi-Bardbori A, Hosseini M-J (2015) Therapeutic implication of coenzyme Q10 during statin therapy: pros and cons. Trends Pharm Sci 1:119–128

    Google Scholar 

  85. Hershey AD, Powers SW, Vockell ALB, LeCates SL, Ellinor PL, Segers A, Burdine D, Manning P, Kabbouche MA (2007) Coenzyme Q10 deficiency and response to supplementation in pediatric and adolescent migraine. Headache J Head Face Pain 47:73–80

    Article  Google Scholar 

  86. Spindler M, Beal MF, Henchcliffe C (2009) Coenzyme Q10 effects in neurodegenerative disease. Neuropsychiatric Dis Treat 5:597

    CAS  Google Scholar 

  87. Sanoobar M, Dehghan P, Khalili M, Azimi A, Seifar F (2016) Coenzyme Q10 as a treatment for fatigue and depression in multiple sclerosis patients: a double blind randomized clinical trial. Nutr Neurosci 19:138–143

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the deputy of research of Zanjan University of Medical Sciences (Grant NO: A-12-769-18) and research grant from Tehran University of Medical Sciences, Tehran, Iran (Grant NO: 42068-158-01-98).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mir-Jamal Hosseini or Ahmad Reza Dehpour.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ershadi, A.S.B., Amini-Khoei, H., Hosseini, MJ. et al. SAHA Improves Depressive Symptoms, Cognitive Impairment and Oxidative Stress: Rise of a New Antidepressant Class. Neurochem Res 46, 1252–1263 (2021). https://doi.org/10.1007/s11064-021-03263-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03263-8

Keywords

Navigation