Skip to main content
Log in

Vorinostat (SAHA) May Exert Its Antidepressant-Like Effects Through the Modulation of Oxidative Stress Pathways

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Suberoylanilide hydroxamic acid (SAHA/Vorinostat), a potent inhibitor of histone deacetylases (HDACs), is known to possess antidepressant properties. However, the exact mechanisms underlying this activity are unknown. In this study, we evaluated the effect of SAHA on the expression of GluN2A, GluN2B (NMDA receptor subunits), (p-)AMPK, and ΔFos proteins which are an integral part of the signal transduction pathways in the brain and also involved in the pathophysiology of depression as well as the mechanism of antidepressant action. We also measured the concentration of malondialdehyde (MDA - a product of lipid peroxidation). The study was carried out in the prefrontal cortex (PFC) and hippocampus (Hp), brain regions implicated in depression. Although SAHA induced changes in the expression of all the proteins and MDA concentration, the effects differed depending on the drug dose, time, and brain structure involved. SAHA reduced MDA concentration and significantly increased p-AMPK protein expression, indicating it may prevent oxidative stress. SAHA also increased the levels of HDAC3 and NMDA subunits (GluN2A and GluN2B), implying it is neuroprotective and may play a crucial role in synaptic plasticity. Moreover, ΔFosB and FosB levels were significantly elevated, suggesting that SAHA may modulate learning and memory processes. Overall, the data indicate that the Hp might play a pivotal role in the mechanism of action of SAHA, hinting at novel mechanisms it play in the antidepressant and neuroprotective effects of SAHA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abd El-Fattah AA, Fahim AT, Sadik NAH, Ali BM (2018) Resveratrol and dimethyl fumarate ameliorate depression-like behaviour in a rat model of chronic unpredictable mild stress. Brain Res 1701:227–236

    PubMed  CAS  Google Scholar 

  • Bartova E, Krejci J, Harnicarova A, Galiova G, Kozubek S (2008) Histone modifications and nuclear architecture: a review. J Histochem Cytochem 56:711–721

    PubMed  PubMed Central  CAS  Google Scholar 

  • Chen WY, Zhang H, Gatta E, Glover EJ, Pandey SC et al (2019) The histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) alleviates depression-like behavior and normalizes epigenetic changes in the hippocampus during ethanol withdrawal. Alcohol 78:79–87

    PubMed  PubMed Central  CAS  Google Scholar 

  • Chen Y, Wang HD, Xia X, Kung HF, Pan Y et al (2007) Behavioral and biochemical studies of total furocoumarins from seeds of Psoralea corylifolia in the chronic mild stress model of depression in mice. Phytomedicine 14:523–529

    PubMed  CAS  Google Scholar 

  • Chmielewska N, Szyndler J, Maciejak P, Plaznik A (2019) Epigenetic mechanisms of stress and depression. Psychiatr Pol 53:1413–1428

    PubMed  Google Scholar 

  • Covington HE 3rd, Maze I, LaPlant QC, Vialou VF, Ohnishi YN et al (2009) Antidepressant actions of histone deacetylase inhibitors. J Neurosci 29:11451–11460

    PubMed  PubMed Central  CAS  Google Scholar 

  • Covington HE 3rd, Vialou VF, LaPlant Q, Ohnishi YN, Nestler EJ (2011) Hippocampal-dependent antidepressant-like activity of histone deacetylase inhibition. Neurosci Lett 493:122–126

    PubMed  PubMed Central  CAS  Google Scholar 

  • Demyanenko SV, Nikul VV, Uzdensky AB (2020) The neuroprotective effect of the HDAC2/3 inhibitor MI192 on the penumbra after photothrombotic stroke in the mouse brain. Mol Neurobiol 57:239–248

    PubMed  CAS  Google Scholar 

  • Drevets WC, Price JL, Furey ML (2008) Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression. Brain Struct Funct 213:93–118

    PubMed  PubMed Central  Google Scholar 

  • Fuchikami M, Morinobu S, Kurata A, Yamamoto S, Yamawaki S (2009) Single immobilization stress differentially alters the expression profile of transcripts of the brain-derived neurotrophic factor (BDNF) gene and histone acetylation at its promoters in the rat hippocampus. Int J Neuropsychopharmacol 12:73–82

    Article  CAS  Google Scholar 

  • Fujita Y, Morinobu S, Takei S, Fuchikami M, Matsumoto T et al (2012) Vorinostat, a histone deacetylase inhibitor, facilitates fear extinction and enhances expression of the hippocampal NR2B-containing NMDA receptor gene. J Psychiatr Res 46:635–643

    PubMed  Google Scholar 

  • Graff J, Tsai LH (2013) Histone acetylation: molecular mnemonics on the chromatin. Nat Rev Neurosci 14:97–111

    PubMed  Google Scholar 

  • Grotto D, Maria LS, Valentini J, Paniz C, Schmitt G et al (2009) Importance of the lipid peroxidation biomarkers and methodological aspects for malondialdehyde quantification. Quim Nova 32:169–174

    CAS  Google Scholar 

  • Guo CJ, Xie JJ, Hong RH, Pan HS, Zhang FG et al (2019) Puerarin alleviates streptozotocin (STZ)-induced osteoporosis in rats through suppressing inflammation and apoptosis via HDAC1/HDAC3 signaling. Biomed Pharmacother 115:108570

    PubMed  CAS  Google Scholar 

  • Halliwell B (2011) Free radicals and antioxidants - quo vadis? Trends Pharmacol Sci 32:125–130

    PubMed  CAS  Google Scholar 

  • Hardingham GE (2019) NMDA receptor C-terminal signaling in development, plasticity, and disease. F1000Res 8:F1000 Faculty Rev-1547

  • Hinchy EC, Gruszczyk AV, Willows R, Navaratnam N, Hall AR et al (2018) Mitochondria-derived ROS activate AMP-activated protein kinase (AMPK) indirectly. J Biol Chem 293:17208–17217

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hollis F, Duclot F, Gunjan A, Kabbaj M (2011) Individual differences in the effect of social defeat on anhedonia and histone acetylation in the rat hippocampus. Horm Behav 59:331–337

    PubMed  CAS  Google Scholar 

  • Hybertson BM, Gao B, Bose SK, McCord JM (2011) Oxidative stress in health and disease: the therapeutic potential of Nrf2 activation. Mol Aspects Med 32:234–246

    PubMed  CAS  Google Scholar 

  • Jimenez-Fernandez S, Gurpegui M, Garrote-Rojas DA, Gutierrez-Rojas L, Carretero MD et al (2020) Oxidative stress parameters and antioxidants in patients with bipolar disorder: Results from a meta-analysis comparing patients, including stratification by polarity and euthymic status, with healthy controls. Bipolar Disord 00:1-13

  • Kv A, Madhana RM, Js IC, Lahkar M, Sinha S et al (2018) Antidepressant activity of vorinostat is associated with amelioration of oxidative stress and inflammation in a corticosterone-induced chronic stress model in mice. Behav Brain Res 344:73–84

    PubMed  Google Scholar 

  • Leone A, Roca MS, Ciardiello C, Terranova-Barberio M, Vitagliano C et al (2015) Vorinostat synergizes with EGFR inhibitors in NSCLC cells by increasing ROS via up-regulation of the major mitochondrial porin VDAC1 and modulation of the c-Myc-NRF2-KEAP1 pathway. Free Radic Biol Med 89:287–299

    PubMed  CAS  Google Scholar 

  • Lin XF, Han YQ, Li HL, Zhao YP, Fei XJ et al (2014) SAHA attenuates sevoflurane-induced learning and memory impairments in fetal mice. Genet Mol Res 13:10769–10778

    PubMed  CAS  Google Scholar 

  • Lv Q, Guo Y, Zhu M, Geng R, Cheng X et al (2019) Predicting individual responses to lithium with oxidative stress markers in drug-free bipolar disorder. World J Biol Psychiatry 20:778–789

    PubMed  Google Scholar 

  • Maes M, Landucci Bonifacio K, Morelli NR, Vargas HO, Barbosa DS et al (2019) Major differences in neurooxidative and neuronitrosative stress pathways between major depressive disorder and types I and II bipolar disorder. Mol Neurobiol 56:141–156

    PubMed  CAS  Google Scholar 

  • Masadeh MM, Alzoubi KH, Al-Azzam SI, Al-Buhairan AM (2017) Possible involvement of ROS generation in vorinostat pretreatment induced enhancement of the antibacterial activity of ciprofloxacin. Clin Pharmacol 9:119–124

    PubMed  PubMed Central  CAS  Google Scholar 

  • McCullough LD, Zeng Z, Li H, Landree LE, McFadden J et al (2005) Pharmacological inhibition of AMP-activated protein kinase provides neuroprotection in stroke. J Biol Chem 280:20493–20502

    PubMed  CAS  Google Scholar 

  • Menezo YJ, Silvestris E, Dale B, Elder K (2016) Oxidative stress and alterations in DNA methylation: two sides of the same coin in reproduction. Reprod Biomed Online 33:668–683

    PubMed  CAS  Google Scholar 

  • Meylan EM, Halfon O, Magistretti PJ, Cardinaux JR (2016) The HDAC inhibitor SAHA improves depressive-like behavior of CRTC1-deficient mice: possible relevance for treatment-resistant depression. Neuropharmacology 107:111–121

    PubMed  PubMed Central  CAS  Google Scholar 

  • Misztak P, Panczyszyn-Trzewik P, Sowa-Kucma M (2018) Histone deacetylases (HDACs) as therapeutic target for depressive disorders. Pharmacol Rep 70:398–408

    PubMed  CAS  Google Scholar 

  • Mungai PT, Waypa GB, Jairaman A, Prakriya M, Dokic D et al (2011) Hypoxia triggers AMPK activation through reactive oxygen species-mediated activation of calcium release-activated calcium channels. Mol Cell Biol 31:3531–3545

    PubMed  PubMed Central  CAS  Google Scholar 

  • Okubo K, Isono M, Miyai K, Asano T, Sato A (2020) Fluvastatin potentiates anticancer activity of vorinostat in renal cancer cells. Cancer Sci 111:112–126

    PubMed  CAS  Google Scholar 

  • Paxinos G, Franklin KBJ (2001) Mouse brain in stereotaxic coordinates, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Petruccelli LA, Dupere-Richer D, Pettersson F, Retrouvey H, Skoulikas S et al (2011) Vorinostat induces reactive oxygen species and DNA damage in acute myeloid leukemia cells. PLoS ONE 6:e20987

    PubMed  PubMed Central  CAS  Google Scholar 

  • Pochwat B, Szewczyk B, Kotarska K, Rafalo-Ulinska A, Siwiec M et al (2018) Hyperforin potentiates antidepressant-like activity of lanicemine in mice. Front Mol Neurosci 11:456

    PubMed  PubMed Central  CAS  Google Scholar 

  • Qiu HM, Yang JX, Liu D, Fei HZ, Hu XY et al (2014) Antidepressive effect of sodium valproate involving suppression of corticotropin-releasing factor expression and elevation of BDNF expression in rats exposed to chronic unpredicted stress. NeuroReport 25:205–210

    PubMed  CAS  Google Scholar 

  • Resende WR, Valvassori SS, Reus GZ, Varela RB, Arent CO et al (2013) Effects of sodium butyrate in animal models of mania and depression: implications as a new mood stabilizer. Behav Pharmacol 24:569–579

    PubMed  CAS  Google Scholar 

  • Samuni Y, Wink DA, Krishna MC, Mitchell JB, Goldstein S (2014) Suberoylanilide hydroxamic acid radiosensitizes tumor hypoxic cells in vitro through the oxidation of nitroxyl to nitric oxide. Free Radic Biol Med 73:291–298

    PubMed  PubMed Central  CAS  Google Scholar 

  • Schroeder FA, Lewis MC, Fass DM, Wagner FF, Zhang YL et al (2013) A selective HDAC 1/2 inhibitor modulates chromatin and gene expression in brain and alters mouse behavior in two mood-related tests. PLoS ONE 8:e71323

    PubMed  PubMed Central  CAS  Google Scholar 

  • Schroeder FA, Lin CL, Crusio WE, Akbarian S (2007) Antidepressant-like effects of the histone deacetylase inhibitor, sodium butyrate, in the mouse. Biol Psychiatry 62:55–64

    PubMed  CAS  Google Scholar 

  • Shipton OA, Paulsen O (2014) GluN2A and GluN2B subunit-containing NMDA receptors in hippocampal plasticity. Philos Trans R Soc Lond B Biol Sci 369:20130163

    PubMed  PubMed Central  Google Scholar 

  • Sies H (1991) Oxidative stress: from basic research to clinical application. Am J Med 91:31S-38S

    PubMed  CAS  Google Scholar 

  • Singh J, Khan M, Singh I (2011) HDAC inhibitor SAHA normalizes the levels of VLCFAs in human skin fibroblasts from X-ALD patients and downregulates the expression of proinflammatory cytokines in Abcd1/2-silenced mouse astrocytes. J Lipid Res 52:2056–2069

    PubMed  PubMed Central  CAS  Google Scholar 

  • Siwek M, Sowa-Kucma M, Dudek D, Styczen K, Szewczyk B et al (2013) Oxidative stress markers in affective disorders. Pharmacol Rep 65:1558–1571

    PubMed  CAS  Google Scholar 

  • Talarowska M (2020) Epigenetic mechanisms in the neurodevelopmental theory of depression. Depress Res Treat 2020:6357873

    PubMed  PubMed Central  Google Scholar 

  • Tao W, Dong Y, Su Q, Wang H, Chen Y et al (2016) Liquiritigenin reverses depression-like behavior in unpredictable chronic mild stress-induced mice by regulating PI3K/Akt/mTOR mediated BDNF/TrkB pathway. Behav Brain Res 308:177–186

    PubMed  CAS  Google Scholar 

  • Tsankova NM, Berton O, Renthal W, Kumar A, Neve RL, Nestler EJ (2006) Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nature Neuroscience 9:519-525

  • Wang L, Chen W, Peng Z, Liu C, Zhang C et al (2015) Vorinostat protects against calcium oxalate-induced kidney injury in mice. Mol Med Rep 12:4291–4297

    PubMed  PubMed Central  CAS  Google Scholar 

  • Yang YC, Chen CN, Wu CI, Huang WJ, Kuo TY et al (2013) NBM-T-L-BMX-OS01, semisynthesized from osthole, is a novel inhibitor of histone deacetylase and enhances learning and memory in rats. Evid Based Complement Alternat Med 2013:514908

    PubMed  PubMed Central  Google Scholar 

  • You BR, Park WH (2014) Suberoylanilide hydroxamic acid-induced HeLa cell death is closely correlated with oxidative stress and thioredoxin 1 levels. Int J Oncol 44:1745–1755

    PubMed  CAS  Google Scholar 

  • Zhao Y, Xing B, Dang YH, Qu CL, Zhu F et al (2013) Microinjection of valproic acid into the ventrolateral orbital cortex enhances stress-related memory formation. PLoS ONE 8:e52698

    PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao Y, Zhou P, Liu B, Bambakidis T, Mazitschek R et al (2015) Protective effect of suberoylanilide hydroxamic acid against lipopolysaccharide-induced liver damage in rodents. J Surg Res 194:544–550

    PubMed  CAS  Google Scholar 

  • Zhou X, Liu Z, Wang H, Liu X, Zhou Z et al (2019) SAHA (vorinostat) facilitates functional polymer-based gene transfection via upregulation of ROS and synergizes with TRAIL gene delivery for cancer therapy. J Drug Target 27:306–314

    PubMed  CAS  Google Scholar 

  • Zhu H, Shan L, Schiller PW, Mai A, Peng T (2010) Histone deacetylase-3 activation promotes tumor necrosis factor-alpha (TNF-alpha) expression in cardiomyocytes during lipopolysaccharide stimulation. J Biol Chem 285:9429–9436

    PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu S, Wang J, Zhang Y, Li V, Kong J et al (2014) Unpredictable chronic mild stress induces anxiety and depression-like behaviors and inactivates AMP-activated protein kinase in mice. Brain Res 1576:81–90

    PubMed  CAS  Google Scholar 

Download references

Funding

The study was partially supported by a grant from the National Science Centre (contract UMO-2013/09/D/NZ7/02520 to M. Sowa-Kućma) and funds for statutory activities of: the Maj Institute of Pharmacology, PAS (Krakow, Poland); the Jagiellonian University Medical College (Krakow, Poland) and the Medical College of Rzeszow University (Rzeszów, Poland).

Author information

Authors and Affiliations

Authors

Contributions

PM designed and carried out all the experiments, analyzed the data, and wrote the first version of the manuscript; BS and GN prepared the last version of the manuscript; and MS-K performed the experiments, worked on the latest version of the manuscript.

Corresponding author

Correspondence to Gabriel Nowak.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Misztak, P., Sowa-Kućma, M., Szewczyk, B. et al. Vorinostat (SAHA) May Exert Its Antidepressant-Like Effects Through the Modulation of Oxidative Stress Pathways. Neurotox Res 39, 170–181 (2021). https://doi.org/10.1007/s12640-020-00317-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-020-00317-7

Keywords

Navigation