Skip to main content
Log in

Satellite Glial Cells and Astrocytes, a Comparative Review

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Astroglia are neural cells, heterogeneous in form and function, which act as supportive elements of the central nervous system; astrocytes contribute to all aspects of neural functions in health and disease. Through their highly ramified processes, astrocytes form close physical contacts with synapses and blood vessels, and are integrated into functional syncytia by gap junctions. Astrocytes interact among themselves and with other cells types (e.g., neurons, microglia, blood vessel cells) by an elaborate repertoire of chemical messengers and receptors; astrocytes also influence neural plasticity and synaptic transmission through maintaining homeostasis of neurotransmitters, K+ buffering, synaptic isolation and control over synaptogenesis and synaptic elimination. Satellite glial cells (SGCs) are the most abundant glial cells in sensory ganglia, and are believed to play major roles in sensory functions, but so far research into SGCs attracted relatively little attention. In this review we compare SGCs to astrocytes with the purpose of using the vast knowledge on astrocytes to explore new aspects of SGCs. We survey the main properties of these two cells types and highlight similarities and differences between them. We conclude that despite the much greater diversity in morphology and signaling mechanisms of astrocytes, there are some parallels between them and SGCs. Both types serve as boundary cells, separating different compartments in the nervous system, but much more needs to be learned on this aspect of SGCs. Astrocytes and SGCs employ chemical messengers and calcium waves for intercellular signaling, but their significance is still poorly understood for both cell types. Both types undergo major changes under pathological conditions, which have a protective function, but an also contribute to disease, and chronic pain in particular. The knowledge obtained on astrocytes is likely to benefit future research on SGCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

There are no data associated with this article.

References

  1. Verkhratsky A, Butt AM (2013) Glial physiology and pathophysiology. Wiley-Blackwell, Chichester

    Book  Google Scholar 

  2. Jessen KR, Mirsky R (2005) The origin and development of glial cells in peripheral nerves. Nat Rev Neurosci 6:671–682. https://doi.org/10.1038/nrn1746

    Article  CAS  PubMed  Google Scholar 

  3. Le Douarin N, Dulac C, Dupin E, Cameron-Curry P (1991) Glial cell lineages in the neural crest. Glia 4:175–184. https://doi.org/10.1002/glia.440040209

    Article  PubMed  Google Scholar 

  4. Zuchero JB, Barres BA (2015) Glia in mammalian development and disease. Development 142:3805–3809. https://doi.org/10.1242/dev.129304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nave KA (2010) Myelination and the trophic support of long axons. Nat Rev Neurosci 11:275–283. https://doi.org/10.1038/nrn2797

    Article  CAS  PubMed  Google Scholar 

  6. Verkhratsky A, Nedergaard M (2018) Physiology of Astroglia. Physiol Rev 98:239–389. https://doi.org/10.1152/physrev.00042.2016

    Article  CAS  PubMed  Google Scholar 

  7. Ji RR, Donnelly CR, Nedergaard M (2019) Astrocytes in chronic pain and itch. Nat Rev Neurosci 20:667–685. https://doi.org/10.1038/s41583-019-0218-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mayr E (1982) The growth of biological thought. Harvard U.P, Cambridge

  9. Golgi C (1903) Opera Omnia. Hoepli, Milano

    Google Scholar 

  10. S.R. Ramon-y-Cajal, (1899) Textura del Sistema Nervioso del Hombre y de los Vertebrados. Translation: Texture of the Nervous System of Man and the Vertebrates, Springer, New York

  11. Schleich CL (1894) Schmerzlose Operationen: Örtliche Betäubung mit indiffrenten Flüssigkeiten. Psychophysik des natürlichen und künstlichen Schlafes, Julius Springer, Berlin

    Google Scholar 

  12. Ambalavanar R, Moritani M, Dessem D (2005) Trigeminal P2X3 receptor expression differs from dorsal root ganglion and is modulated by deep tissue inflammation. Pain 117:280–291. https://doi.org/10.1016/j.pain.2005.06.029

    Article  CAS  PubMed  Google Scholar 

  13. Jager SE, Pallesen LT, Richner M, Harley P, Hore Z, McMahon S, Denk F, Vaegter CB (2020) Changes in the transcriptional fingerprint of satellite glial cells following peripheral nerve injury. Glia 68:1375–1395. https://doi.org/10.1002/glia.23785

    Article  PubMed  Google Scholar 

  14. Bushong EA, Martone ME, Jones YZ, Ellisman MH (2002) Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J Neurosci 22:183–192

    Article  CAS  Google Scholar 

  15. Iadecola C (2017) The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease. Neuron 96:17–42. https://doi.org/10.1016/j.neuron.2017.07.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Khakh BS, Sofroniew MV (2015) Diversity of astrocyte functions and phenotypes in neural circuits. Nat Neurosci 18:942–952. https://doi.org/10.1038/nn.4043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Verkhratsky A, Semyanov A, Zorec R (2020) Physiology of astroglial excitability. Function 1:zqaa016

    Article  Google Scholar 

  18. Gavrilov N, Golyagina I, Brazhe A, Scimemi A, Turlapov V, Semyanov A (2018) Astrocytic coverage of dendritic spines, dendritic shafts, and axonal boutons in hippocampal neuropil. Front Cell Neurosci 12:248. https://doi.org/10.3389/fncel.2018.00248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Verkhratsky A, Rose CR (2020) Na+-dependent transporters: the backbone of astroglial homeostatic function. Cell Calcium 85:102136. https://doi.org/10.1016/j.ceca.2019.102136

    Article  CAS  PubMed  Google Scholar 

  20. Rose CR, Verkhratsky A (2016) Principles of sodium homeostasis and sodium signalling in astroglia. Glia 64:1611–1627. https://doi.org/10.1002/glia.22964

    Article  PubMed  Google Scholar 

  21. Verkhratsky A, Nedergaard M (2014) Astroglial cradle in the life of the synapse. Philos Trans R Soc Lond B 369:20130595. https://doi.org/10.1098/rstb.2013.0595

    Article  CAS  Google Scholar 

  22. Nedergaard M, Verkhratsky A (2012) Artifact versus reality - how astrocytes contribute to synaptic events. Glia 60:1013–1023. https://doi.org/10.1002/glia.22288

    Article  PubMed  PubMed Central  Google Scholar 

  23. Giaume C, Koulakoff A, Roux L, Holcman D, Rouach N (2010) Astroglial networks: a step further in neuroglial and gliovascular interactions. Nat Rev Neurosci 11:87–99. https://doi.org/10.1038/nrn2757

    Article  CAS  PubMed  Google Scholar 

  24. Houades V, Koulakoff A, Ezan P, Seif I, Giaume C (2008) Gap junction-mediated astrocytic networks in the mouse barrel cortex. J Neurosci 28:5207–5217. https://doi.org/10.1523/JNEUROSCI.5100-07.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Giaume C, Naus CC, Saez JC, Leybaert L (2021) Glial Connexins and Pannexins in the Healthy and Diseased Brain. Physiol Rev 101:93–145. https://doi.org/10.1152/physrev.00043.2018

    Article  PubMed  Google Scholar 

  26. Giaume C, Fromaget C, el Aoumari A, Cordier J, Glowinski J, Gros D (1991) Gap junctions in cultured astrocytes: single-channel currents and characterization of channel-forming protein. Neuron 6:133–143

    Article  CAS  Google Scholar 

  27. Nagy JI, Li X, Rempel J, Stelmack G, Patel D, Staines WA, Yasumura T, Rash JE (2001) Connexin26 in adult rodent central nervous system: demonstration at astrocytic gap junctions and colocalization with connexin30 and connexin43. J Comp Neurol 441:302–323

    Article  CAS  Google Scholar 

  28. Nagy JI, Dudek FE, Rash JE (2004) Update on connexins and gap junctions in neurons and glia in the mammalian nervous system. Brain Res Brain Res Rev 47:191–215. https://doi.org/10.1016/j.brainresrev.2004.05.005

    Article  CAS  PubMed  Google Scholar 

  29. Hertz L, Gibbs ME, Dienel GA (2014) Fluxes of lactate into, from, and among gap junction-coupled astrocytes and their interaction with noradrenaline. Front Neurosci 8:261. https://doi.org/10.3389/fnins.2014.00261

    Article  PubMed  PubMed Central  Google Scholar 

  30. Rouach N, Koulakoff A, Abudara V, Willecke K, Giaume C (2008) Astroglial metabolic networks sustain hippocampal synaptic transmission. Science 322:1551–1555. https://doi.org/10.1126/science.1164022

    Article  CAS  PubMed  Google Scholar 

  31. Mathiisen TM, Lehre KP, Danbolt NC, Ottersen OP (2010) The perivascular astroglial sheath provides a complete covering of the brain microvessels: an electron microscopic 3D reconstruction. Glia 58:1094–1103. https://doi.org/10.1002/glia.20990

    Article  PubMed  Google Scholar 

  32. Feig SL, Haberly LB (2011) Surface-associated astrocytes, not endfeet, form the glia limitans in posterior piriform cortex and have a spatially distributed, not a domain, organization. J Comp Neurol 519:1952–1969. https://doi.org/10.1002/cne.22615

    Article  CAS  PubMed  Google Scholar 

  33. Sweeney MD, Zhao Z, Montagne A, Nelson AR, Zlokovic BV (2019) Blood-brain barrier: from physiology to disease and back. Physiol Rev 99:21–78. https://doi.org/10.1152/physrev.00050.2017

    Article  CAS  PubMed  Google Scholar 

  34. Mulligan SJ, MacVicar BA (2004) Calcium transients in astrocyte endfeet cause cerebrovascular constrictions. Nature 431:195–199

    Article  CAS  Google Scholar 

  35. Zonta M, Angulo MC, Gobbo S, Rosengarten B, Hossmann KA, Pozzan T, Carmignoto G (2003) Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat Neurosci 6:43–50

    Article  CAS  Google Scholar 

  36. Iadecola C, Nedergaard M (2007) Glial regulation of the cerebral microvasculature. Nat Neurosci 10:1369–1376. https://doi.org/10.1038/nn2003

    Article  CAS  PubMed  Google Scholar 

  37. Hanani M, Spray DC (2020) Emerging importance of satellite glia in nervous system function and dysfunction. Nat Rev Neurosci 21:485–498. https://doi.org/10.1038/s41583-020-0333-z

    Article  CAS  PubMed  Google Scholar 

  38. Pannese E (2018) Biology and pathology of perineuronal satellite cells in sensory Ganglia. Adv Anat Embryol Cell Biol 226:1–83. https://doi.org/10.1007/978-3-319-60140-3

    Article  Google Scholar 

  39. Hu P, McLachlan EM (2002) Macrophage and lymphocyte invasion of dorsal root ganglia after peripheral nerve lesions in the rat. Neuroscience 112:23–38. https://doi.org/10.1016/s0306-4522(02)00065-9

    Article  CAS  PubMed  Google Scholar 

  40. Hanani M (2005) Satellite glial cells in sensory ganglia: from form to function. Brain Res Brain Res Rev 48:457–476. https://doi.org/10.1016/j.brainresrev.2004.09.001

    Article  CAS  PubMed  Google Scholar 

  41. Kubicek L, Kopacik R, Klusakova I, Dubovy P (2010) Alterations in the vascular architecture of the dorsal root ganglia in a rat neuropathic pain model. Ann Anat 192:101–106. https://doi.org/10.1016/j.aanat.2010.01.005

    Article  PubMed  Google Scholar 

  42. Faber-Zuschratter H, Huttmann K, Steinhauser C, Becker A, Schramm J, Okafo U, Shanley D, Yilmazer-Hanke DM (2009) Ultrastructural and functional characterization of satellitosis in the human lateral amygdala associated with Ammon’s horn sclerosis. Acta Neuropathol 117:545–555. https://doi.org/10.1007/s00401-009-0504-5

    Article  PubMed  Google Scholar 

  43. Takasaki C, Yamasaki M, Uchigashima M, Konno K, Yanagawa Y, Watanabe M (2010) Cytochemical and cytological properties of perineuronal oligodendrocytes in the mouse cortex. Eur J Neurosci 32:1326–1336. https://doi.org/10.1111/j.1460-9568.2010.07377.x

    Article  PubMed  Google Scholar 

  44. Wolff JR, Chao TL (2004) Cytoarchitectonics of non-neuronal cells in the central nervous system. Adv Molec Cell Biol 31:1–51

    Google Scholar 

  45. Li YC, Sun LK, Zhou L, Zhang HN (2011) Clarification of the peripherally located F-actin network around the primary afferent neurons. Brain Res 1392:54–61. https://doi.org/10.1016/j.brainres.2011.03.063

    Article  CAS  PubMed  Google Scholar 

  46. Pannese E, Procacci P, Ledda M (1996) Ultrastructural localization of actin in the cell body of rat spinal ganglion neurons. Anat Embryol (Berl) 194:527–531. https://doi.org/10.1007/BF00187466

    Article  CAS  Google Scholar 

  47. Oberheim NA, Takano T, Han X, He W, Lin JH, Wang F, Xu Q, Wyatt JD, Pilcher W, Ojemann JG, Ransom BR, Goldman SA, Nedergaard M (2009) Uniquely hominid features of adult human astrocytes. J Neurosci 29:3276–3287. https://doi.org/10.1523/JNEUROSCI.4707-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Oberheim NA, Wang X, Goldman S, Nedergaard M (2006) Astrocytic complexity distinguishes the human brain. Trends Neurosci 29:547–553. https://doi.org/10.1016/j.tins.2006.08.004

    Article  CAS  PubMed  Google Scholar 

  49. Verkhratsky A, Oberheim-Bush NA, Nedergaard M, Butt A (2018) The special case of human astrocytes. Neuroglia. https://doi.org/10.3390/neuroglia1010004

    Article  Google Scholar 

  50. Pannese E, Ledda M, Arcidiacono G, Rigamonti L (1991) Clusters of nerve cell bodies enclosed within a common connective tissue envelope in the spinal ganglia of the lizard and rat. Cell Tissue Res 264:209–214. https://doi.org/10.1007/BF00313957

    Article  CAS  PubMed  Google Scholar 

  51. Ledda M, De Palo S, Pannese E (2004) Ratios between number of neuroglial cells and number and volume of nerve cells in the spinal ganglia of two species of reptiles and three species of mammals. Tissue Cell 36:55–62. https://doi.org/10.1016/j.tice.2003.09.001

    Article  CAS  PubMed  Google Scholar 

  52. Pannese E (2002) Perikaryal surface specializations of neurons in sensory ganglia. Int Rev Cytol 220:1–34. https://doi.org/10.1016/s0074-7696(02)20002-9

    Article  PubMed  Google Scholar 

  53. Hanani M (2012) Intercellular communication in sensory ganglia by purinergic receptors and gap junctions: implications for chronic pain. Brain Res 1487:183–191. https://doi.org/10.1016/j.brainres.2012.03.070

    Article  CAS  PubMed  Google Scholar 

  54. Ohara PT, Vit JP, Bhargava A, Jasmin L (2008) Evidence for a role of connexin 43 in trigeminal pain using RNA interference in vivo. J Neurophysiol 100:3064–3073. https://doi.org/10.1152/jn.90722.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Procacci P, Magnaghi V, Pannese E (2008) Perineuronal satellite cells in mouse spinal ganglia express the gap junction protein connexin43 throughout life with decline in old age. Brain Res Bull 75:562–569. https://doi.org/10.1016/j.brainresbull.2007.09.007

    Article  CAS  PubMed  Google Scholar 

  56. Perez Armendariz EM, Norcini M, Hernandez-Tellez B, Castell-Rodriguez A, Coronel-Cruz C, Alquicira RG, Sideris A, Recio-Pinto E (2018) Neurons and satellite glial cells in adult rat lumbar dorsal root ganglia express connexin 36. Acta Histochem 120:168–178. https://doi.org/10.1016/j.acthis.2017.11.005

    Article  CAS  PubMed  Google Scholar 

  57. Konishi H, Okamoto T, Hara Y, Komine O, Tamada H, Maeda M, Osako F, Kobayashi M, Nishiyama A, Kataoka Y, Takai T, Udagawa N, Jung S, Ozato K, Tamura T, Tsuda M, Yamanaka K, Ogi T, Sato K, Kiyama H (2020) Astrocytic phagocytosis is a compensatory mechanism for microglial dysfunction. EMBO J 39:e104464. https://doi.org/10.15252/embj.2020104464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rostami J, Fotaki G, Sirois J, Mzezewa R, Bergstrom J, Essand M, Healy L, Erlandsson A (2020) Astrocytes have the capacity to act as antigen-presenting cells in the Parkinson’s disease brain. J Neuroinflammation 17:119. https://doi.org/10.1186/s12974-020-01776-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Constantinescu CS, Tani M, Ransohoff RM, Wysocka M, Hilliard B, Fujioka T, Murphy S, Tighe PJ, Das Sarma J, Trinchieri G, Rostami A (2005) Astrocytes as antigen-presenting cells: expression of IL-12/IL-23. J Neurochem 95:331–340. https://doi.org/10.1111/j.1471-4159.2005.03368.x

    Article  CAS  PubMed  Google Scholar 

  60. van Velzen M, Laman JD, Kleinjan A, Poot A, Osterhaus AD, Verjans GM (2009) Neuron-interacting satellite glial cells in human trigeminal ganglia have an APC phenotype. J Immunol 183:2456–2461. https://doi.org/10.4049/jimmunol.0900890

    Article  CAS  PubMed  Google Scholar 

  61. Verkhratsky A, Orkand RK, Kettenmann H (1998) Glial calcium: homeostasis and signaling function. Physiol Rev 78:99–141

    Article  CAS  Google Scholar 

  62. Verkhratsky A, Steinhauser C (2000) Ion channels in glial cells. Brain Res Brain Res Rev 32:380–412. https://doi.org/10.1016/s0165-0173(99)00093-4

    Article  CAS  PubMed  Google Scholar 

  63. Lalo U, Pankratov Y, Parpura V, Verkhratsky A (2011) Ionotropic receptors in neuronal-astroglial signalling: what is the role of “excitable” molecules in non-excitable cells. Biochim Biophys Acta 1813:992–1002. https://doi.org/10.1016/j.bbamcr.2010.09.007

    Article  CAS  PubMed  Google Scholar 

  64. Porter JT, McCarthy KD (1997) Astrocytic neurotransmitter receptors in situ and in vivo. Prog Neurobiol 51:439–455

    Article  CAS  Google Scholar 

  65. Kimelberg HK (1995) Receptors on astrocytes–what possible functions? Neurochem Int 26:27–40. https://doi.org/10.1016/0197-0186(94)00118-e

    Article  CAS  PubMed  Google Scholar 

  66. Weick M, Cherkas PS, Hartig W, Pannicke T, Uckermann O, Bringmann A, Tal M, Reichenbach A, Hanani M (2003) P2 receptors in satellite glial cells in trigeminal ganglia of mice. Neuroscience 120:969–977. https://doi.org/10.1016/s0306-4522(03)00388-9

    Article  CAS  PubMed  Google Scholar 

  67. Ceruti S, Fumagalli M, Villa G, Verderio C, Abbracchio MP (2008) Purinoceptor-mediated calcium signaling in primary neuron-glia trigeminal cultures. Cell Calcium 43:576–590. https://doi.org/10.1016/j.ceca.2007.10.003

    Article  CAS  PubMed  Google Scholar 

  68. Magni G, Ceruti S (2014) The purinergic system and glial cells: emerging costars in nociception. Biomed Res Int 2014:495789. https://doi.org/10.1155/2014/495789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Belzer V, Shraer N, Hanani M (2010) Phenotypic changes in satellite glial cells in cultured trigeminal ganglia. Neuron Glia Biol 6:237–243. https://doi.org/10.1017/S1740925X1100007X

    Article  PubMed  Google Scholar 

  70. Kushnir R, Cherkas PS, Hanani M (2011) Peripheral inflammation upregulates P2X receptor expression in satellite glial cells of mouse trigeminal ganglia: a calcium imaging study. Neuropharmacology 61:739–746. https://doi.org/10.1016/j.neuropharm.2011.05.019

    Article  CAS  PubMed  Google Scholar 

  71. Chessell IP, Hatcher JP, Bountra C, Michel AD, Hughes JP, Green P, Egerton J, Murfin M, Richardson J, Peck WL, Grahames CB, Casula MA, Yiangou Y, Birch R, Anand P, Buell GN (2005) Disruption of the P2X7 purinoceptor gene abolishes chronic inflammatory and neuropathic pain. Pain 114:386–396. https://doi.org/10.1016/j.pain.2005.01.002

    Article  CAS  PubMed  Google Scholar 

  72. Liu S, Zou L, Xie J, Xie W, Wen S, Xie Q, Gao Y, Li G, Zhang C, Xu C, Xu H, Wu B, Lv Q, Zhang X, Wang S, Xue Y, Liang S (2016) LncRNA NONRATT021972 siRNA regulates neuropathic pain behaviors in type 2 diabetic rats through the P2X7 receptor in dorsal root ganglia. Mol Brain 9:44. https://doi.org/10.1186/s13041-016-0226-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Song J, Ying Y, Wang W, Liu X, Xu X, Wei X, Ruan X (2018) The role of P2X7R/ERK signaling in dorsal root ganglia satellite glial cells in the development of chronic postsurgical pain induced by skin/muscle incision and retraction (SMIR). Brain Behav Immun 69:180–189. https://doi.org/10.1016/j.bbi.2017.11.011

    Article  CAS  PubMed  Google Scholar 

  74. Zhang X, Chen Y, Wang C, Huang LY (2007) Neuronal somatic ATP release triggers neuron-satellite glial cell communication in dorsal root ganglia. Proc Natl Acad Sci USA 104:9864–9869. https://doi.org/10.1073/pnas.0611048104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Huang LY, Gu Y, Chen Y (2013) Communication between neuronal somata and satellite glial cells in sensory ganglia. Glia 61:1571–1581. https://doi.org/10.1002/glia.22541

    Article  PubMed  PubMed Central  Google Scholar 

  76. Suadicani SO, Cherkas PS, Zuckerman J, Smith DN, Spray DC, Hanani M (2010) Bidirectional calcium signaling between satellite glial cells and neurons in cultured mouse trigeminal ganglia. Neuron Glia Biol 6:43–51. https://doi.org/10.1017/S1740925X09990408

    Article  PubMed  Google Scholar 

  77. Feldman-Goriachnik R, Hanani M (2017) The effects of endothelin-1 on satellite glial cells in peripheral ganglia. Neuropeptides 63:37–42. https://doi.org/10.1016/j.npep.2017.03.002

    Article  CAS  PubMed  Google Scholar 

  78. Feldman-Goriachnik R, Hanani M (2011) Functional study of endothelin B receptors in satellite glial cells in trigeminal ganglia. NeuroReport 22:465–469. https://doi.org/10.1097/WNR.0b013e3283472487

    Article  CAS  PubMed  Google Scholar 

  79. Thippeswamy T, Morris R (2001) Evidence that nitric oxide-induced synthesis of cGMP occurs in a paracrine but not an autocrine fashion and that the site of its release can be regulated: studies in dorsal root ganglia in vivo and in vitro. Nitric Oxide 5:105–115. https://doi.org/10.1006/niox.2001.0316

    Article  CAS  PubMed  Google Scholar 

  80. Belzer V, Hanani M (2019) Nitric oxide as a messenger between neurons and satellite glial cells in dorsal root ganglia. Glia 67:1296–1307. https://doi.org/10.1002/glia.23603

    Article  PubMed  Google Scholar 

  81. Amitai Y (2010) Physiologic role for “inducible” nitric oxide synthase: a new form of astrocytic-neuronal interface. Glia 58:1775–1781. https://doi.org/10.1002/glia.21057

    Article  PubMed  Google Scholar 

  82. Hertz L (2013) The glutamate-glutamine (GABA) cycle: importance of late postnatal development and potential reciprocal interactions between biosynthesis and degradation. Front Endocrinol (Lausanne) 4:59. https://doi.org/10.3389/fendo.2013.00059

    Article  CAS  Google Scholar 

  83. Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105

    Article  CAS  Google Scholar 

  84. Zhou Y, Danbolt NC (2013) GABA and glutamate transporters in brain. Front Endocrinol (Lausanne) 4:165. https://doi.org/10.3389/fendo.2013.00165

    Article  Google Scholar 

  85. Berger UV, Hediger MA (2000) Distribution of the glutamate transporters GLAST and GLT-1 in rat circumventricular organs, meninges, and dorsal root ganglia. J Comp Neurol 421:385–399. https://doi.org/10.1002/(sici)1096-9861(20000605)421:3

    Article  CAS  PubMed  Google Scholar 

  86. Miller KE, Richards BA, Kriebel RM (2002) Glutamine-, glutamine synthetase-, glutamate dehydrogenase- and pyruvate carboxylase-immunoreactivities in the rat dorsal root ganglion and peripheral nerve. Brain Res 945:202–211. https://doi.org/10.1016/s0006-8993(02)02802-0

    Article  CAS  PubMed  Google Scholar 

  87. Larsen BR, Assentoft M, Cotrina ML, Hua SZ, Nedergaard M, Kaila K, Voipio J, MacAulay N (2014) Contributions of the Na+/K+-ATPase, NKCC1, and Kir4.1 to hippocampal K+ clearance and volume responses. Glia 62:608–622. https://doi.org/10.1002/glia.22629

    Article  PubMed  PubMed Central  Google Scholar 

  88. MacAulay N (2020) Molecular mechanisms of K+ clearance and extracellular space shrinkage. Glia cells as the stars. Glia 68:2192–2211. https://doi.org/10.1002/glia.23824

    Article  PubMed  Google Scholar 

  89. Arteaga MF, Gutierrez R, Avila J, Mobasheri A, Diaz-Flores L, Martin-Vasallo P (2004) Regeneration influences expression of the Na+, K+-atpase subunit isoforms in the rat peripheral nervous system. Neuroscience 129:691–702. https://doi.org/10.1016/j.neuroscience.2004.08.041

    Article  CAS  PubMed  Google Scholar 

  90. Verkhratsky A, Untiet V, Rose CR (2020) Ionic signalling in astroglia beyond calcium. J Physiol 598:1655–1670. https://doi.org/10.1113/JP277478

    Article  CAS  PubMed  Google Scholar 

  91. Warwick RA, Hanani M (2013) The contribution of satellite glial cells to chemotherapy-induced neuropathic pain. Eur J Pain 17:571–580. https://doi.org/10.1002/j.1532-2149.2012.00219.x

    Article  CAS  PubMed  Google Scholar 

  92. Angelova PR, Kasymov V, Christie I, Sheikhbahaei S, Turovsky E, Marina N, Korsak A, Zwicker J, Teschemacher AG, Ackland GL, Funk GD, Kasparov S, Abramov AY, Gourine AV (2015) Functional oxygen sensitivity of astrocytes. J Neurosci 35:10460–10473. https://doi.org/10.1523/JNEUROSCI.0045-15.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Gourine AV, Kasymov V, Marina N, Tang F, Figueiredo MF, Lane S, Teschemacher AG, Spyer KM, Deisseroth K, Kasparov S (2010) Astrocytes control breathing through pH-dependent release of ATP. Science 329:571–575. https://doi.org/10.1126/science.1190721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kasymov V, Larina O, Castaldo C, Marina N, Patrushev M, Kasparov S, Gourine AV (2013) Differential sensitivity of brainstem versus cortical astrocytes to changes in pH reveals functional regional specialization of astroglia. J Neurosci 33:435–441. https://doi.org/10.1523/JNEUROSCI.2813-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Guyenet PG, Stornetta RL, Souza G, Abbott SBG, Shi Y, Bayliss DA (2019) The retrotrapezoid nucleus: central chemoreceptor and regulator of breathing automaticity. Trends Neurosci 42:807–824. https://doi.org/10.1016/j.tins.2019.09.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Turovsky E, Theparambil SM, Kasymov V, Deitmer JW, Del Arroyo AG, Ackland GL, Corneveaux JJ, Allen AN, Huentelman MJ, Kasparov S, Marina N, Gourine AV (2016) Mechanisms of CO2/H+ sensitivity of astrocytes. J Neurosci 36:10750–10758

    Article  CAS  Google Scholar 

  97. Noda M, Hiyama TY (2015) The Nax channel: What it is and what it does. Neuroscientist 21:399–412. https://doi.org/10.1177/1073858414541009

    Article  CAS  PubMed  Google Scholar 

  98. Watanabe E, Hiyama TY, Shimizu H, Kodama R, Hayashi N, Miyata S, Yanagawa Y, Obata K, Noda M (2006) Sodium-level-sensitive sodium channel Nax is expressed in glial laminate processes in the sensory circumventricular organs. Am J Physiol Regul Integr Comp Physiol 290:R568-576. https://doi.org/10.1152/ajpregu.00618.2005

    Article  CAS  PubMed  Google Scholar 

  99. Noda M, Sakuta H (2013) Central regulation of body-fluid homeostasis. Trends Neurosci 36:661–673. https://doi.org/10.1016/j.tins.2013.08.004

    Article  CAS  PubMed  Google Scholar 

  100. Turovsky EA, Braga A, Yu Y, Esteras N, Korsak A, Theparambil SM, Hadjihambi A, Hosford PS, Teschemacher AG, Marina N, Lythgoe MF, Haydon PG, Gourine AV (2020) Mechanosensory signaling in astrocytes. J Neurosci 40:9364–9371. https://doi.org/10.1523/JNEUROSCI.1249-20.2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Devor M (1999) Unexplained peculiarities of the dorsal rot ganglion. Pain Suppl 6:S27–S35

    Article  Google Scholar 

  102. Pekny M, Pekna M, Messing A, Steinhauser C, Lee JM, Parpura V, Hol EM, Sofroniew MV, Verkhratsky A (2016) Astrocytes: a central element in neurological diseases. Acta Neuropathol 131:323–345. https://doi.org/10.1007/s00401-015-1513-1

    Article  CAS  PubMed  Google Scholar 

  103. Verkhratsky A, Parpura V (2016) Astrogliopathology in neurological, neurodevelopmental and psychiatric disorders. Neurobiol Dis 85:254–261. https://doi.org/10.1016/j.nbd.2015.03.025

    Article  PubMed  Google Scholar 

  104. Verkhratsky A, Rodrigues JJ, Pivoriunas A, Zorec R, Semyanov A (2019) Astroglial atrophy in Alzheimer’s disease. Pflugers Arch 471:1247–1261. https://doi.org/10.1007/s00424-019-02310-2

    Article  CAS  PubMed  Google Scholar 

  105. Verkhratsky A, Zorec R, Parpura V (2017) Stratification of astrocytes in healthy and diseased brain. Brain Pathol 27:629–644. https://doi.org/10.1111/bpa.12537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Parpura V, Heneka MT, Montana V, Oliet SH, Schousboe A, Haydon PG, Stout RF Jr, Spray DC, Reichenbach A, Pannicke T, Pekny M, Pekna M, Zorec R, Verkhratsky A (2012) Glial cells in (patho)physiology. J Neurochem 121:4–27. https://doi.org/10.1111/j.1471-4159.2012.07664.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sofroniew MV (2020) Astrocyte Reactivity: Subtypes, States, and Functions in CNS Innate Immunity. Trends Immunol 41:758–770. https://doi.org/10.1016/j.it.2020.07.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Escartin A, Galea E, Lakatos A, O’Callaghan JP, Petzold GC, Serrano-Pozo A, Steinhauser C, Volterra A, Carmignoto G, Agarwal A, Allen NJ, Araque A, Barbeito L, Barzilai A, Bergles DE, Bonvento G, Butt AM, Chen W-T, Cohen-Salmon M, Cunningham C, Deneen B, De Strooper B, Díaz-Castro B, Farina C, Freeman M, Gallo V, Goldman JE, Goldman SA, Götz M, Gutiérrez A, Haydon PG, Heiland DH, Hol EM, Holt MG, Iino M, Kastanenka KV, Kettenmann H, Khakh BS, Koizumi S, Lee CJ, Liddelow SA, MacVicar BA, Magistretti P, Messing A, Mishra A, Molofsky AV, Murai K, Norris CM, Okada S, Oliet S, Oliveira JF, Panatier A, Parpura V, Pekna M, Pekny M, Pellerin L, Perea G, Pérez-Nievas BG, Pfrieger FW, Poskanzer KE, Quintana FJ, Ransohoff RM, Riquelme-Perez M, Robel S, Rose CR, Rothstein J, Rouach N, Rowitch DH, Semyanov A, Sirko S, Sontheimer H, Swanson RA, Vitorica J, Wanner I-B, Wood LB, Wu J, Zheng B, Zimmer RE, Zorec R, Sofroniew MV, Verkhratsky A (2021) Consensus paper: reactive astrocyte nomenclature, definitions, and future directions. Nat Neurosci. https://doi.org/10.1038/s41593-020-00783-4

    Article  PubMed  PubMed Central  Google Scholar 

  109. Verkhratsky A, Rodriguez JJ, Steardo L (2014) Astrogliopathology: a central element of neuropsychiatric diseases? Neuroscientist 20:576–588. https://doi.org/10.1177/1073858413510208

    Article  PubMed  Google Scholar 

  110. Messing A, Brenner M, Feany MB, Nedergaard M, Goldman JE (2012) Alexander disease. J Neurosci 32:5017–5023. https://doi.org/10.1523/JNEUROSCI.5384-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Chun H, Im H, Kang YJ, Kim Y, Shin JH, Won W, Lim J, Ju Y, Park YM, Kim S, Lee SE, Lee J, Woo J, Hwang Y, Cho H, Jo S, Park JH, Kim D, Kim DY, Seo JS, Gwag BJ, Kim YS, Park KD, Kaang BK, Cho H, Ryu H, Lee CJ (2020) Severe reactive astrocytes precipitate pathological hallmarks of Alzheimer’s disease via H2O2- production. Nat Neurosci 23:1555–1566. https://doi.org/10.1038/s41593-020-00735-y

    Article  CAS  PubMed  Google Scholar 

  112. Chiang CY, Dostrovsky JO, Iwata K, Sessle BJ (2011) Role of glia in orofacial pain. Neuroscientist 17:303–320. https://doi.org/10.1177/1073858410386801

    Article  CAS  PubMed  Google Scholar 

  113. Okada-Ogawa A, Suzuki I, Sessle BJ, Chiang CY, Salter MW, Dostrovsky JO, Tsuboi Y, Kondo M, Kitagawa J, Kobayashi A, Noma N, Imamura Y, Iwata K (2009) Astroglia in medullary dorsal horn (trigeminal spinal subnucleus caudalis) are involved in trigeminal neuropathic pain mechanisms. J Neurosci 29:11161–11171. https://doi.org/10.1523/JNEUROSCI.3365-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Jin YZ, Zhang P, Hao T, Wang LM, Guo MD, Gan YH (2019) Connexin 43 contributes to temporomandibular joint inflammation induced-hypernociception via sodium channel 1.7 in trigeminal ganglion. Neurosci Lett 707:134301

    Article  CAS  Google Scholar 

  115. Komiya H, Shimizu K, Ishii K, Kudo H, Okamura T, Kanno K, Shinoda M, Ogiso B, Iwata K (2018) Connexin 43 expression in satellite glial cells contributes to ectopic tooth-pulp pain. J Oral Sci 60:493–499. https://doi.org/10.2334/josnusd.17-0452

    Article  CAS  PubMed  Google Scholar 

  116. Kaji K, Shinoda M, Honda K, Unno S, Shimizu N, Iwata K (2016) Connexin 43 contributes to ectopic orofacial pain following inferior alveolar nerve injury. Mol Pain. https://doi.org/10.1177/1744806916633704

    Article  PubMed  PubMed Central  Google Scholar 

  117. Garrett FG, Durham PL (2008) Differential expression of connexins in trigeminal ganglion neurons and satellite glial cells in response to chronic or acute joint inflammation. Neuron Glia Biol 4:295–306

    Article  Google Scholar 

  118. Hanani M, Huang TY, Cherkas PS, Ledda M, Pannese E (2002) Glial cell plasticity in sensory ganglia induced by nerve damage. Neuroscience 114:279–283. https://doi.org/10.1016/s0306-4522(02)00279-8

    Article  CAS  PubMed  Google Scholar 

  119. Cherkas PS, Huang TY, Pannicke T, Tal M, Reichenbach A, Hanani M (2004) The effects of axotomy on neurons and satellite glial cells in mouse trigeminal ganglion. Pain 110:290–298. https://doi.org/10.1016/j.pain.2004.04.007

    Article  PubMed  Google Scholar 

  120. Blum E, Procacci P, Conte V, Hanani M (2014) Systemic inflammation alters satellite glial cell function and structure. A possible contribution to pain. Neuroscience 274:209–217. https://doi.org/10.1016/j.neuroscience.2014.05.029

    Article  CAS  PubMed  Google Scholar 

  121. Spray DC, Hanani M (2019) Gap junctions, pannexins and pain. Neurosci Lett 695:46–52. https://doi.org/10.1016/j.neulet.2017.06.035

    Article  CAS  PubMed  Google Scholar 

  122. Huang TY, Belzer V, Hanani M (2010) Gap junctions in dorsal root ganglia: possible contribution to visceral pain. Eur J Pain 14(49):e41–e11. https://doi.org/10.1016/j.ejpain.2009.02.005

    Article  CAS  Google Scholar 

  123. Spray DC, Rozental R, Srinivas M (2002) Prospects for rational development of pharmacological gap junction channel blockers. Curr Drug Targets 3:455–464. https://doi.org/10.2174/1389450023347353

    Article  CAS  PubMed  Google Scholar 

  124. Hanani M, Blum E, Liu S, Peng L, Liang S (2014) Satellite glial cells in dorsal root ganglia are activated in streptozotocin-treated rodents. J Cell Mol Med 18:2367–2371. https://doi.org/10.1111/jcmm.12406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Woodham P, Anderson PN, Nadim W, Turmaine M (1989) Satellite cells surrounding axotomised rat dorsal root ganglion cells increase expression of a GFAP-like protein. Neurosci Lett 98:8–12. https://doi.org/10.1016/0304-3940(89)90364-9

    Article  CAS  PubMed  Google Scholar 

  126. Stephenson JL, Byers MR (1995) GFAP immunoreactivity in trigeminal ganglion satellite cells after tooth injury in rats. Exp Neurol 131:11–22. https://doi.org/10.1016/0014-4886(95)90003-9

    Article  CAS  PubMed  Google Scholar 

  127. Abbott NJ, Ronnback L, Hansson E (2006) Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 7:41–53. https://doi.org/10.1038/nrn1824

    Article  CAS  PubMed  Google Scholar 

  128. Ballabh P, Braun A, Nedergaard M (2004) The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis 16:1–13. https://doi.org/10.1016/j.nbd.2003.12.016

    Article  CAS  PubMed  Google Scholar 

  129. Giaume C, Leybaert L, Naus CC, Saez JC (2013) Connexin and pannexin hemichannels in brain glial cells: properties, pharmacology, and roles. Front Pharmacol 4:88. https://doi.org/10.3389/fphar.2013.00088

    Article  PubMed  PubMed Central  Google Scholar 

  130. Theis M, Giaume C (2012) Connexin-based intercellular communication and astrocyte heterogeneity. Brain Res 1487:88–98. https://doi.org/10.1016/j.brainres.2012.06.045

    Article  CAS  PubMed  Google Scholar 

  131. Cornell-Bell AH, Finkbeiner SM, Cooper MS, Smith SJ (1990) Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science 247:470–473

    Article  CAS  Google Scholar 

  132. Verkhratsky A, Rodriguez JJ, Parpura V (2012) Calcium signalling in astroglia. Mol Cell Endocrinol 353:45–56. https://doi.org/10.1016/j.mce.2011.08.039

    Article  CAS  PubMed  Google Scholar 

  133. Li T, Chen X, Zhang C, Zhang Y, Yao W (2019) An update on reactive astrocytes in chronic pain. J Neuroinflammation 16:140. https://doi.org/10.1186/s12974-019-1524-2

    Article  PubMed  PubMed Central  Google Scholar 

  134. Verkhratsky A, Matteoli M, Parpura V, Mothet JP, Zorec R (2016) Astrocytes as secretory cells of the central nervous system: idiosyncrasies of vesicular secretion. EMBO J 35:239–257. https://doi.org/10.15252/embj.201592705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci U S A 91:10625–10629

    Article  CAS  Google Scholar 

  136. Pellerin L, Magistretti PJ (2012) Sweet sixteen for ANLS. J Cereb Blood Flow Metab 32:1152–1166. https://doi.org/10.1038/jcbfm.2011.149

    Article  CAS  PubMed  Google Scholar 

  137. Jakoby P, Schmidt E, Ruminot I, Gutierrez R, Barros LF, Deitmer JW (2014) Higher transport and metabolism of glucose in astrocytes compared with neurons: a multiphoton study of hippocampal and cerebellar tissue slices. Cereb Cortex 24:222–231. https://doi.org/10.1093/cercor/bhs309

    Article  PubMed  Google Scholar 

  138. Allen A, Messier C (2013) Plastic changes in the astrocyte GLUT1 glucose transporter and beta-tubulin microtubule protein following voluntary exercise in mice. Behav Brain Res 240:95–102. https://doi.org/10.1016/j.bbr.2012.11.025

    Article  CAS  PubMed  Google Scholar 

  139. Brown AM, Ransom BR (2007) Astrocyte glycogen and brain energy metabolism. Glia 55:1263–1271. https://doi.org/10.1002/glia.20557

    Article  PubMed  Google Scholar 

  140. Bak LK, Walls AB, Schousboe A, Waagepetersen HS (2018) Astrocytic glycogen metabolism in the healthy and diseased brain. J Biol Chem 293:7108–7116. https://doi.org/10.1074/jbc.R117.803239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Prof. Amin Derouiche (University of Frankfurt) for helpful suggestions. MH was supported by the Israel Science Foundation (1297/18) and by the United States-Israel Binational Science Foundation (BSF, 2019076).

Author information

Authors and Affiliations

Authors

Contributions

MH and AV wrote and edited the article.

Corresponding author

Correspondence to Menachem Hanani.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Special Issue: In Honor of Prof. Vladimir Parpura.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanani, M., Verkhratsky, A. Satellite Glial Cells and Astrocytes, a Comparative Review. Neurochem Res 46, 2525–2537 (2021). https://doi.org/10.1007/s11064-021-03255-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03255-8

Keywords

Navigation