Skip to main content

Advertisement

Log in

Effects of Peroxiredoxin 2 in Neurological Disorders: A Review of its Molecular Mechanisms

  • Review
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Oxidative stress and neuroinflammation are closely related to the pathological processes of neurological disorders. Peroxiredoxin 2 (Prdx2) is an abundant antioxidant enzyme in the central nervous system. Prdx2 reduces the production of reactive oxygen species and participates in regulating various signaling pathways in neurons by catalyzing hydrogen peroxide (H2O2), thereby protecting neurons against oxidative stress and an inflammatory injury. However, the spillage of Prdx2, as damage-associated molecular patterns, accelerates brain damage after stroke by activating an inflammatory response. The post-translational modifications of Prdx2 also affect its enzyme activity. This review focuses on the effects of Prdx2 and its molecular mechanisms in various neurological disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Feigin VL, Nichols E, Alam T, Bannick MS, Beghi E, Blake N, Culpepper WJ, Dorsey ER, Elbaz A, Ellenbogen RG, Fisher JL (2019) Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. https://doi.org/10.1016/s1474-4422(18)30499-x

    Article  PubMed  Google Scholar 

  2. Li G, Gong J, Lei H, Liu J, Xu XZ (2016) Promotion of behavior and neuronal function by reactive oxygen species in C. elegans. Nat Commun 7:13234. https://doi.org/10.1038/ncomms13234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Butterfield DA, Halliwell B (2019) Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat Rev Neurosci 20(3):148–160. https://doi.org/10.1038/s41583-019-0132-6

    Article  CAS  PubMed  Google Scholar 

  4. Rodrigo R, Fernandez-Gajardo R, Gutierrez R, Matamala JM, Carrasco R, Miranda-Merchak A, Feuerhake W (2013) Oxidative stress and pathophysiology of ischemic stroke: novel therapeutic opportunities. CNS Neurol Disord Drug Targets 12(5):698–714

    Article  CAS  PubMed  Google Scholar 

  5. Zhang W, Hu X, Shen Q, Xing D (2019) Mitochondria-specific drug release and reactive oxygen species burst induced by polyprodrug nanoreactors can enhance chemotherapy. Nat Commun 10(1):1704. https://doi.org/10.1038/s41467-019-09566-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Colonna M, Butovsky O (2017) Microglia function in the central nervous system during health and neurodegeneration. Annu Rev Immunol 35:441–468. https://doi.org/10.1146/annurev-immunol-051116-052358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kim K, Kim IH, Lee KY, Rhee SG, Stadtman ER (1988) The isolation and purification of a specific "protector" protein which inhibits enzyme inactivation by a thiol/Fe(III)/O2 mixed-function oxidation system. J Biol Chem 263(10):4704–4711

    CAS  PubMed  Google Scholar 

  8. Rhee SG (2016) Overview on peroxiredoxin. Mol Cells 39(1):1–5. https://doi.org/10.14348/molcells.2016.2368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Copley SD, Novak WR, Babbitt PC (2004) Divergence of function in the thioredoxin fold suprafamily: evidence for evolution of peroxiredoxins from a thioredoxin-like ancestor. Biochemistry 43(44):13981–13995. https://doi.org/10.1021/bi048947r

    Article  CAS  PubMed  Google Scholar 

  10. Tchouague M, Grondin M, Glory A, Averill-Bates D (2019) Heat shock induces the cellular antioxidant defenses peroxiredoxin, glutathione and glucose 6-phosphate dehydrogenase through Nrf2. Chem Biol Interact 310:108717. https://doi.org/10.1016/j.cbi.2019.06.030

    Article  CAS  PubMed  Google Scholar 

  11. Zeida A, Trujillo M, Ferrer-Sueta G, Denicola A, Estrin DA, Radi R (2019) Catalysis of peroxide reduction by fast reacting protein thiols. Chem Rev 119(19):10829–10855. https://doi.org/10.1021/acs.chemrev.9b00371

    Article  CAS  PubMed  Google Scholar 

  12. Sunico CR, Sultan A, Nakamura T, Dolatabadi N, Parker J, Shan B, Han X, Yates JR 3rd, Masliah E, Ambasudhan R, Nakanishi N, Lipton SA (2016) Role of sulfiredoxin as a peroxiredoxin-2 denitrosylase in human iPSC-derived dopaminergic neurons. Proc Natl Acad Sci USA 113(47):E7564–e7571. https://doi.org/10.1073/pnas.1608784113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Goemaere J, Knoops B (2012) Peroxiredoxin distribution in the mouse brain with emphasis on neuronal populations affected in neurodegenerative disorders. J Comp Neurol 520(2):258–280. https://doi.org/10.1002/cne.22689

    Article  CAS  PubMed  Google Scholar 

  14. Choi MH, Lee IK, Kim GW, Kim BU, Han YH, Yu DY, Park HS, Kim KY, Lee JS, Choi C, Bae YS, Lee BI, Rhee SG, Kang SW (2005) Regulation of PDGF signalling and vascular remodelling by peroxiredoxin II. Nature 435(7040):347–353. https://doi.org/10.1038/nature03587

    Article  CAS  PubMed  Google Scholar 

  15. Wu F, Tian F, Zeng W, Liu X, Fan J, Lin Y, Zhang Y (2017) Role of peroxiredoxin2 downregulation in recurrent miscarriage through regulation of trophoblast proliferation and apoptosis. Cell Death Dis 8(6):e2908. https://doi.org/10.1038/cddis.2017.301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yao J, Taylor M, Davey F, Ren Y, Aiton J, Coote P, Fang F, Chen JX, Yan SD, Gunn-Moore FJ (2007) Interaction of amyloid binding alcohol dehydrogenase/Abeta mediates up-regulation of peroxiredoxin II in the brains of Alzheimer's disease patients and a transgenic Alzheimer's disease mouse model. Mol Cell Neurosci 35(2):377–382. https://doi.org/10.1016/j.mcn.2007.03.013

    Article  CAS  PubMed  Google Scholar 

  17. Abbas MN, Kausar S, Cui H (2019) The biological role of peroxiredoxins in innate immune responses of aquatic invertebrates. Fish Shellfish Immunol 89:91–97. https://doi.org/10.1016/j.fsi.2019.03.062

    Article  CAS  PubMed  Google Scholar 

  18. Wood ZA, Poole LB, Karplus PA (2003) Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science 300(5619):650–653. https://doi.org/10.1126/science.1080405

    Article  CAS  PubMed  Google Scholar 

  19. Agrawal-Singh S, Isken F, Agelopoulos K, Klein HU, Thoennissen NH, Koehler G, Hascher A, Baumer N, Berdel WE, Thiede C, Ehninger G, Becker A, Schlenke P, Wang Y, McClelland M, Krug U, Koschmieder S, Buchner T, Yu DY, Singh SV, Hansen K, Serve H, Dugas M, Muller-Tidow C (2012) Genome-wide analysis of histone H3 acetylation patterns in AML identifies PRDX2 as an epigenetically silenced tumor suppressor gene. Blood 119(10):2346–2357. https://doi.org/10.1182/blood-2011-06-358705

    Article  CAS  PubMed  Google Scholar 

  20. Leak RK, Zhang L, Luo Y, Li P, Zhao H, Liu X, Ling F, Jia J, Chen J, Ji X (2013) Peroxiredoxin 2 battles poly(ADP-ribose) polymerase 1- and p53-dependent prodeath pathways after ischemic injury. Stroke 44(4):1124–1134. https://doi.org/10.1161/strokeaha.111.680157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rashidian J, Rousseaux MW, Venderova K, Qu D, Callaghan SM, Phillips M, Bland RJ, During MJ, Mao Z, Slack RS, Park DS (2009) Essential role of cytoplasmic cdk5 and Prx2 in multiple ischemic injury models, in vivo. J Neurosci 29(40):12497–12505. https://doi.org/10.1523/jneurosci.3892-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jeong HJ, Yoo DY, Kim DW, Yeo HJ, Cho SB, Hyeon J, Park JH, Park J, Eum WS, Hwang HS, Won MH, Hwang IK, Choi SY (2014) Neuroprotective effect of PEP-1-peroxiredoxin2 on CA1 regions in the hippocampus against ischemic insult. Biochem Biophys Acta 7:2321–2330. https://doi.org/10.1016/j.bbagen.2014.03.003

    Article  CAS  Google Scholar 

  23. Boulos S, Meloni BP, Arthur PG, Bojarski C, Knuckey NW (2007) Peroxiredoxin 2 overexpression protects cortical neuronal cultures from ischemic and oxidative injury but not glutamate excitotoxicity, whereas Cu/Zn superoxide dismutase 1 overexpression protects only against oxidative injury. J Neurosci Res 85(14):3089–3097. https://doi.org/10.1002/jnr.21429

    Article  CAS  PubMed  Google Scholar 

  24. Shichita T, Hasegawa E, Kimura A, Morita R, Sakaguchi R, Takada I, Sekiya T, Ooboshi H, Kitazono T, Yanagawa T, Ishii T, Takahashi H, Mori S, Nishibori M, Kuroda K, Akira S, Miyake K, Yoshimura A (2012) Peroxiredoxin family proteins are key initiators of post-ischemic inflammation in the brain. Nat Med 18(6):911–917. https://doi.org/10.1038/nm.2749

    Article  CAS  PubMed  Google Scholar 

  25. Mao XN, Zhou HJ, Yang XJ, Zhao LX, Kuang X, Chen C, Liu DL, Du JR (2017) Neuroprotective effect of a novel gastrodin derivative against ischemic brain injury: involvement of peroxiredoxin and TLR4 signaling inhibition. Oncotarget 8(53):90979–90995. https://doi.org/10.18632/oncotarget.18773

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lu Y, Zhang XS, Zhang ZH, Zhou XM, Gao YY, Liu GJ, Wang H, Wu LY, Li W, Hang CH (2018) Peroxiredoxin 2 activates microglia by interacting with Toll-like receptor 4 after subarachnoid hemorrhage. J Neuroinflammation 15(1):87. https://doi.org/10.1186/s12974-018-1118-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ock J, Han HS, Hong SH, Lee SY, Han YM, Kwon BM, Suk K (2010) Obovatol attenuates microglia-mediated neuroinflammation by modulating redox regulation. Br J Pharmacol 159(8):1646–1662. https://doi.org/10.1111/j.1476-5381.2010.00659.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sun KH, de Pablo Y, Vincent F, Shah K (2008) Deregulated Cdk5 promotes oxidative stress and mitochondrial dysfunction. J Neurochem 107(1):265–278. https://doi.org/10.1111/j.1471-4159.2008.05616.x

    Article  CAS  PubMed  Google Scholar 

  29. Mitchell RM, Tajuddin N, Campbell EM, Neafsey EJ, Collins MA (2016) Ethanol preconditioning of rat cerebellar cultures targets NMDA receptors to the synapse and enhances peroxiredoxin 2 expression. Brain Res 1642:163–169. https://doi.org/10.1016/j.brainres.2016.03.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hu X, Weng Z, Chu CT, Zhang L, Cao G, Gao Y, Signore A, Zhu J, Hastings T, Greenamyre JT, Chen J (2011) Peroxiredoxin-2 protects against 6-hydroxydopamine-induced dopaminergic neurodegeneration via attenuation of the apoptosis signal-regulating kinase (ASK1) signaling cascade. J Neurosci 31(1):247–261. https://doi.org/10.1523/jneurosci.4589-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jami MS, Salehi-Najafabadi Z, Ahmadinejad F, Hoedt E, Chaleshtori MH, Ghatrehsamani M, Neubert TA, Larsen JP, Moller SG (2015) Edaravone leads to proteome changes indicative of neuronal cell protection in response to oxidative stress. Neurochem Int 90:134–141. https://doi.org/10.1016/j.neuint.2015.07.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Qu D, Rashidian J, Mount MP, Aleyasin H, Parsanejad M, Lira A, Haque E, Zhang Y, Callaghan S, Daigle M, Rousseaux MW, Slack RS, Albert PR, Vincent I, Woulfe JM, Park DS (2007) Role of Cdk5-mediated phosphorylation of Prx2 in MPTP toxicity and Parkinson's disease. Neuron 55(1):37–52. https://doi.org/10.1016/j.neuron.2007.05.033

    Article  CAS  PubMed  Google Scholar 

  33. Zhang L, Liu W, Szumlinski KK, Lew J (2012) p10, the N-terminal domain of p35, protects against CDK5/p25-induced neurotoxicity. Proc Natl Acad Sci USA 109(49):20041–20046. https://doi.org/10.1073/pnas.1212914109

    Article  PubMed  PubMed Central  Google Scholar 

  34. Fang J, Nakamura T, Cho DH, Gu Z, Lipton SA (2007) S-nitrosylation of peroxiredoxin 2 promotes oxidative stress-induced neuronal cell death in Parkinson's disease. Proc Natl Acad Sci USA 104(47):18742–18747. https://doi.org/10.1073/pnas.0705904104

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zhao H, Wang R, Tao Z, Gao L, Yan F, Gao Z, Liu X, Ji X, Luo Y (2014) Ischemic postconditioning relieves cerebral ischemia and reperfusion injury through activating T-LAK cell-originated protein kinase/protein kinase B pathway in rats. Stroke 45(8):2417–2424. https://doi.org/10.1161/strokeaha.114.006135

    Article  CAS  PubMed  Google Scholar 

  36. Koh PO (2017) Hyperglycemia decreases preoxiredoxin-2 expression in a middle cerebral artery occlusion model. Lab Anim Res 33(2):98–104. https://doi.org/10.5625/lar.2017.33.2.98

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sung JH, Kim MO, Koh PO (2011) Proteomic identification of proteins differentially expressed by nicotinamide in focal cerebral ischemic injury. Neuroscience 174:171–177. https://doi.org/10.1016/j.neuroscience.2010.11.021

    Article  CAS  PubMed  Google Scholar 

  38. Koh PO (2010) Proteomic analysis of focal cerebral ischemic injury in male rats. J Vet Med Sci 72(2):181–185. https://doi.org/10.1292/jvms.09-0364

    Article  CAS  PubMed  Google Scholar 

  39. Koh PO (2011) Identification of proteins differentially expressed in cerebral cortexes of Ginkgo biloba extract (EGb761)-treated rats in a middle cerebral artery occlusion model: a proteomics approach. Am J Chin Med 39(2):315–324. https://doi.org/10.1142/s0192415x11008841

    Article  PubMed  Google Scholar 

  40. Sung JH, Gim SA, Koh PO (2014) Ferulic acid attenuates the cerebral ischemic injury-induced decrease in peroxiredoxin-2 and thioredoxin expression. Neurosci Lett 566:88–92. https://doi.org/10.1016/j.neulet.2014.02.040

    Article  CAS  PubMed  Google Scholar 

  41. Gan Y, Ji X, Hu X, Luo Y, Zhang L, Li P, Liu X, Yan F, Vosler P, Gao Y, Stetler RA, Chen J (2012) Transgenic overexpression of peroxiredoxin-2 attenuates ischemic neuronal injury via suppression of a redox-sensitive pro-death signaling pathway. Antioxid Redox Signal 17(5):719–732. https://doi.org/10.1089/ars.2011.4298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Du Y, Zhang X, Ji H, Liu H, Li S, Li L (2012) Probucol and atorvastatin in combination protect rat brains in MCAO model: upregulating peroxiredoxin2, Foxo3a and Nrf2 expression. Neurosci Lett 509(2):110–115. https://doi.org/10.1016/j.neulet.2011.12.054

    Article  CAS  PubMed  Google Scholar 

  43. Bian L, Zhang J, Wang M, Keep RF, Xi G, Hua Y (2019) Intracerebral hemorrhage-induced brain injury in rats: the role of extracellular peroxiredoxin 2. Transl Stroke Res. https://doi.org/10.1007/s12975-019-00714-x

    Article  PubMed  PubMed Central  Google Scholar 

  44. Connor DE Jr, Chaitanya GV, Chittiboina P, McCarthy P, Scott LK, Schrott L, Minagar A, Nanda A, Alexander JS (2017) Variations in the cerebrospinal fluid proteome following traumatic brain injury and subarachnoid hemorrhage. Pathophysiology 24(3):169–183. https://doi.org/10.1016/j.pathophys.2017.04.003

    Article  CAS  PubMed  Google Scholar 

  45. Zhang ZH, Han YL, Wang CX, Zhou CH, Wu LY, Zhang HS, Chen Q, Fan JM, Zhou ML, Hang CH (2016) The effect of subarachnoid erythrocyte lysate on brain injury: a preliminary study. Biosci Rep. https://doi.org/10.1042/bsr20160100

    Article  PubMed  PubMed Central  Google Scholar 

  46. Krapfenbauer K, Engidawork E, Cairns N, Fountoulakis M, Lubec G (2003) Aberrant expression of peroxiredoxin subtypes in neurodegenerative disorders. Brain Res 967(1–2):152–160. https://doi.org/10.1016/s0006-8993(02)04243-9

    Article  CAS  PubMed  Google Scholar 

  47. Zali H, Zamanian-Azodi M, Rezaei Tavirani M, Akbar-Zadeh Baghban A (2015) Protein drug targets of lavandula angustifolia on treatment of rat Alzheimer's disease. Iran J Pharm Res 14(1):291–302

    PubMed  PubMed Central  Google Scholar 

  48. Jian W, Wei X, Chen L, Wang Z, Sun Y, Zhu S, Lou H, Yan S, Li X, Zhou J, Zhang B (2017) Inhibition of HDAC6 increases acetylation of peroxiredoxin1/2 and ameliorates 6-OHDA induced dopaminergic injury. Neurosci Lett 658:114–120. https://doi.org/10.1016/j.neulet.2017.08.029

    Article  CAS  PubMed  Google Scholar 

  49. Yeung PKK, Lai AKW, Son HJ, Zhang X, Hwang O, Chung SSM, Chung SK (2017) Aldose reductase deficiency leads to oxidative stress-induced dopaminergic neuronal loss and autophagic abnormality in an animal model of Parkinson's disease. Neurobiol Aging 50:119–133. https://doi.org/10.1016/j.neurobiolaging.2016.11.008

    Article  CAS  PubMed  Google Scholar 

  50. Voigt D, Scheidt U, Derfuss T, Bruck W, Junker A (2017) Expression of the antioxidative enzyme peroxiredoxin 2 in multiple sclerosis lesions in relation to inflammation. Int J Mol Sci. https://doi.org/10.3390/ijms18040760

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kato S, Kato M, Abe Y, Matsumura T, Nishino T, Aoki M, Itoyama Y, Asayama K, Awaya A, Hirano A, Ohama E (2005) Redox system expression in the motor neurons in amyotrophic lateral sclerosis (ALS): immunohistochemical studies on sporadic ALS, superoxide dismutase 1 (SOD1)-mutated familial ALS, and SOD1-mutated ALS animal models. Acta Neuropathol 110(2):101–112. https://doi.org/10.1007/s00401-005-1019-3

    Article  CAS  PubMed  Google Scholar 

  52. Choi JH, Kim DW, Yoo DY, Jeong HJ, Kim W, Jung HY, Nam SM, Kim JH, Yoon YS, Choi SY, Hwang IK (2013) Repeated administration of PEP-1-Cu, Zn-superoxide dismutase and PEP-1-peroxiredoxin-2 to senescent mice induced by d-galactose improves the hippocampal functions. Neurochem Res 38(10):2046–2055. https://doi.org/10.1007/s11064-013-1112-2

    Article  CAS  PubMed  Google Scholar 

  53. Lee KS, Iijima-Ando K, Iijima K, Lee WJ, Lee JH, Yu K, Lee DS (2009) JNK/FOXO-mediated neuronal expression of fly homologue of peroxiredoxin II reduces oxidative stress and extends life span. J Biol Chem 284(43):29454–29461. https://doi.org/10.1074/jbc.M109.028027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang AR, Cheng S, Chiuve SE, Cushman M, Delling FN, Deo R, de Ferranti SD, Ferguson JF, Fornage M, Gillespie C, Isasi CR, Jimenez MC, Jordan LC, Judd SE, Lackland D, Lichtman JH, Lisabeth L, Liu S, Longenecker CT, Lutsey PL, Mackey JS, Matchar DB, Matsushita K, Mussolino ME, Nasir K, O'Flaherty M, Palaniappan LP, Pandey A, Pandey DK, Reeves MJ, Ritchey MD, Rodriguez CJ, Roth GA, Rosamond WD, Sampson UKA, Satou GM, Shah SH, Spartano NL, Tirschwell DL, Tsao CW, Voeks JH, Willey JZ, Wilkins JT, Wu JH, Alger HM, Wong SS, Muntner P (2018) Heart disease and stroke statistics-2018 update: a report from the American Heart Association. Circulation 137(12):e67–e492. https://doi.org/10.1161/cir.0000000000000558

    Article  PubMed  Google Scholar 

  55. Wu X, Luo X, Zhu Q, Zhang J, Liu Y, Luo H, Cheng Y, Xie Z (2017) The roles of thrombospondins in hemorrhagic stroke. Biomed Res Int 2017:8403184. https://doi.org/10.1155/2017/8403184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Li P, Stetler RA, Leak RK, Shi Y, Li Y, Yu W, Bennett MVL, Chen J (2018) Oxidative stress and DNA damage after cerebral ischemia: potential therapeutic targets to repair the genome and improve stroke recovery. Neuropharmacology 134(Pt B):208–217. https://doi.org/10.1016/j.neuropharm.2017.11.011

    Article  CAS  PubMed  Google Scholar 

  57. Zhao LX, Du JR, Zhou HJ, Liu DL, Gu MX, Long FY (2016) Differences in proinflammatory property of six subtypes of peroxiredoxins and anti-inflammatory effect of ligustilide in macrophages. PLoS ONE 11(10):e0164586. https://doi.org/10.1371/journal.pone.0164586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Xi G, Keep RF, Hoff JT (2006) Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurol 5(1):53–63. https://doi.org/10.1016/s1474-4422(05)70283-0

    Article  PubMed  Google Scholar 

  59. Aronowski J, Zhao X (2011) Molecular pathophysiology of cerebral hemorrhage: secondary brain injury. Stroke 42(6):1781–1786. https://doi.org/10.1161/strokeaha.110.596718

    Article  PubMed  PubMed Central  Google Scholar 

  60. Zhu Q, Enkhjargal B, Huang L, Zhang T, Sun C, Xie Z, Wu P, Mo J, Tang J, Xie Z, Zhang JH (2018) Aggf1 attenuates neuroinflammation and BBB disruption via PI3K/Akt/NF-kappaB pathway after subarachnoid hemorrhage in rats. J Neuroinflammation 15(1):178. https://doi.org/10.1186/s12974-018-1211-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fumoto T, Naraoka M, Katagai T, Li Y, Shimamura N, Ohkuma H (2019) The role of oxidative stress in microvascular disturbances after experimental subarachnoid hemorrhage. Transl Stroke Res. https://doi.org/10.1007/s12975-018-0685-0

    Article  PubMed  Google Scholar 

  62. Lu Y, Zhang XS, Zhou XM, Gao YY, Chen CL, Liu JP, Ye ZN, Zhang ZH, Wu LY, Li W, Hang CH (2019) Peroxiredoxin 1/2 protects brain against H2O2-induced apoptosis after subarachnoid hemorrhage. FASEB J 33(2):3051–3062. https://doi.org/10.1096/fj.201801150R

    Article  CAS  PubMed  Google Scholar 

  63. Zott B, Busche MA, Sperling RA, Konnerth A (2018) What happens with the circuit in Alzheimer's disease in mice and humans? Annu Rev Neurosci 41:277–297. https://doi.org/10.1146/annurev-neuro-080317-061725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lee VM, Goedert M, Trojanowski JQ (2001) Neurodegenerative tauopathies. Annu Rev Neurosci 24:1121–1159. https://doi.org/10.1146/annurev.neuro.24.1.1121

    Article  CAS  PubMed  Google Scholar 

  65. Wang R, Reddy PH (2017) Role of glutamate and NMDA receptors in Alzheimer's disease. J Alzheimer Dis 57(4):1041–1048. https://doi.org/10.3233/jad-160763

    Article  CAS  Google Scholar 

  66. Cheignon C, Tomas M, Bonnefont-Rousselot D, Faller P, Hureau C, Collin F (2018) Oxidative stress and the amyloid beta peptide in Alzheimer's disease. Redox Biol 14:450–464. https://doi.org/10.1016/j.redox.2017.10.014

    Article  CAS  PubMed  Google Scholar 

  67. Kim SH, Fountoulakis M, Cairns N, Lubec G (2001) Protein levels of human peroxiredoxin subtypes in brains of patients with Alzheimer's disease and down syndrome. J Neural Transm Suppl 61:223–235

    Google Scholar 

  68. Khodaie N, Tajuddin N, Mitchell RM, Neafsey EJ, Collins MA (2018) Combinatorial preconditioning of rat brain cultures with subprotective ethanol and resveratrol concentrations promotes synergistic neuroprotection. Neurotox Res 34(3):749–756. https://doi.org/10.1007/s12640-018-9886-2

    Article  CAS  PubMed  Google Scholar 

  69. Randall LM, Manta B, Hugo M, Gil M, Batthyany C, Trujillo M, Poole LB, Denicola A (2014) Nitration transforms a sensitive peroxiredoxin 2 into a more active and robust peroxidase. J Biol Chem 289(22):15536–15543. https://doi.org/10.1074/jbc.M113.539213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kalia LV, Lang AE (2015) Parkinson's disease. Lancet 386(9996):896–912. https://doi.org/10.1016/s0140-6736(14)61393-3

    Article  CAS  PubMed  Google Scholar 

  71. Burbulla LF, Song P, Mazzulli JR (2017) Dopamine oxidation mediates mitochondrial and lysosomal dysfunction in Parkinson's disease. Science 357(6357):1255–1261. https://doi.org/10.1126/science.aam9080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Basso M, Giraudo S, Corpillo D, Bergamasco B, Lopiano L, Fasano M (2004) Proteome analysis of human substantia nigra in Parkinson's disease. Proteomics 4(12):3943–3952. https://doi.org/10.1002/pmic.200400848

    Article  CAS  PubMed  Google Scholar 

  73. Kato S, Saeki Y, Aoki M, Nagai M, Ishigaki A, Itoyama Y, Kato M, Asayama K, Awaya A, Hirano A, Ohama E (2004) Histological evidence of redox system breakdown caused by superoxide dismutase 1 (SOD1) aggregation is common to SOD1-mutated motor neurons in humans and animal models. Acta Neuropathol 107(2):149–158. https://doi.org/10.1007/s00401-003-0791-1

    Article  CAS  PubMed  Google Scholar 

  74. Park SJ, Kim JH, Lee DG, Kim JM, Lee DS (2018) Peroxiredoxin 2 deficiency accelerates age-related ovarian failure through the reactive oxygen species-mediated JNK pathway in mice. Free Radical Biol Med 123:96–106. https://doi.org/10.1016/j.freeradbiomed.2018.05.059

    Article  CAS  Google Scholar 

  75. Han YH, Kim HS, Kim JM, Kim SK, Yu DY, Moon EY (2005) Inhibitory role of peroxiredoxin II (Prx II) on cellular senescence. FEBS Lett 579(21):4897–4902. https://doi.org/10.1016/j.febslet.2005.07.049

    Article  CAS  PubMed  Google Scholar 

  76. Miyamoto N, Izumi H, Miyamoto R, Kubota T, Tawara A, Sasaguri Y, Kohno K (2009) Nipradilol and timolol induce Foxo3a and peroxiredoxin 2 expression and protect trabecular meshwork cells from oxidative stress. Invest Ophthalmol Vis Sci 50(6):2777–2784. https://doi.org/10.1167/iovs.08-3061

    Article  PubMed  Google Scholar 

  77. Svistunova DM, Simon JN, Rembeza E, Crabtree M, Yue WW, Oliver PL, Finelli MJ (2019) Oxidation resistance 1 regulates post-translational modifications of peroxiredoxin 2 in the cerebellum. Free Radical Biol Med 130:151–162. https://doi.org/10.1016/j.freeradbiomed.2018.10.447

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (31870335); the Health Industry Planning Project of Gansu Provincial Health and Family Planning Commission (GSWSKY 2016-17); the Science and Technology Major Special Collaboration Project of Gansu Provincial Key Laboratory of Gene Function (BA2016036); the “Cuiying Technology Innovation” Planning Project of Lanzhou University Second Hospital (CY2017-MS19); Cuiying Graduate Supervisor Applicant Training Program Of Lanzhou University Second Hospital (201802).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenchang Zhang.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Su, G., Gao, J. et al. Effects of Peroxiredoxin 2 in Neurological Disorders: A Review of its Molecular Mechanisms. Neurochem Res 45, 720–730 (2020). https://doi.org/10.1007/s11064-020-02971-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-020-02971-x

Keywords

Navigation