Skip to main content
Log in

Sevoflurane Post-conditioning Protects Primary Rat Cortical Neurons Against Oxygen–Glucose Deprivation/Resuscitation: Roles of Extracellular Signal-Regulated Kinase 1/2 and Bid, Bim, Puma

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Temporal post-conditioning to induce neuroprotection against brain ischemia–reperfusion injury insult is considered to be an effective intervention, but the exact mechanisms of sevoflurane post-conditioning are poorly understood. Extracellular signal-related kinases 1/2 (Erk1/2) play a pivotal role in the cell growth and proliferation. The essential axis of activator Bid, Bim, Puma (BH3s) and BAX, BAK in activating the mitochondrial death program might offer common ground for cell death signal. We hypothesized that, sevoflurane post-conditioning might inhibit the expression of Bid, Bim and Puma and is activated by phosphor-Erk1/2 to reduce neuronal death. To test this hypothesis, we exposed primary cultured cortical neurons to oxygen–glucose deprivation for 1 h and resuscitation for 24 h (OGD/R). The assays of MTT, propidium iodide uptake, JC-1 fluorescence and western blot demonstrated that OGD/R exposure reduced cell viability, increased cell death, decreased mitochondrial membrane potential and the expressions of Bid, Bim, and Puma. Inhibition of Erk1/2 phosphorylation could partially attenuate 2 % of sevoflurane post-conditioning mediated increase in neuronal viability and mitochondrial membrane potential, and also a decrease in cell death and expression of Bid, Bim and Puma after OGD/R treatment. The results demonstrated that, the protection of sevoflurane post-conditioning markedly reducing death of cortical neurons exposed to OGD/R could be correlated with down-regulation of Bid, Bim and Puma expression mediated by phosphorylation/activation of Erk1/2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lin D, Li G, Zuo Z (2011) Volatile anesthetic post-treatment induces protection via inhibition of glycogen synthase kinase 3beta in human neuron-like cells. Neuroscience 179:73–79

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Ye Z, Guo Q, Xia P, Wang N, Wang E, Yuan Y (2012) Sevoflurane postconditioning involves an up-regulation of HIF-1alpha and HO-1 expression via PI3K/Akt pathway in a rat model of focal cerebral ischemia. Brain Res 1463:63–74

    Article  CAS  PubMed  Google Scholar 

  3. Yang Z, Chen Y, Zhang Y, Jiang Y, Fang X, Xu J (2014) Sevoflurane postconditioning against cerebral ischemic neuronal injury is abolished in diet-induced obesity: role of brain mitochondrial KATP channels. Mol Med Rep 9:843–850

    CAS  PubMed  Google Scholar 

  4. Liu HG, Hua Z, Zhang Y, Wang YX, Meng C, Liang Y, Tian SY, Ma YP, Wang L, Wang WS (2012) Effect of sevoflurane postconditioning on gene expression in brain tissue of the middle cerebral artery occlusion rat model. Mol Biol Rep 39:10505–10513

    Article  CAS  PubMed  Google Scholar 

  5. Kim SJ, Eum HA, Billiar TR, Lee SM (2013) Role of heme oxygenase 1 in TNF/TNF receptor-mediated apoptosis after hepatic ischemia/reperfusion in rats. Shock (Augusta, Ga) 39:380–388

    Article  CAS  Google Scholar 

  6. Morciano G, Giorgi C, Bonora M, Punzetti S, Pavasini R, Wieckowski MR, Campo G, Pinton P (2015) Molecular identity of the mitochondrial permeability transition pore and its role in ischemia–reperfusion injury. J Mol Cell Cardiol 78C:142–153

    Article  Google Scholar 

  7. Wang X (2001) The expanding role of mitochondria in apoptosis. Genes Dev 15:2922–2933

    CAS  PubMed  Google Scholar 

  8. Ren D, Tu HC, Kim H, Wang GX, Bean GR, Takeuchi O, Jeffers JR, Zambetti GP, Hsieh JJ, Cheng EH (2010) BID, BIM, and PUMA are essential for activation of the BAX- and BAK-dependent cell death program. Science (New York, NY) 330:1390–1393

    Article  CAS  Google Scholar 

  9. Yang Y, Zhang X, Cui H, Zhang C, Zhu C, Li L (2014) Apelin-13 protects the brain against ischemia/reperfusion injury through activating PI3K/Akt and ERK1/2 signaling pathways. Neurosci Lett 568:44–49

    Article  CAS  PubMed  Google Scholar 

  10. Gong G, Yuan L, Cai L, Ran M, Zhang Y, Gong H, Dai X, Wu W, Dong H (2014) Tetramethylpyrazine suppresses transient oxygen-glucose deprivation-induced connexin32 expression and cell apoptosis via the ERK1/2 and p38 MAPK pathway in cultured hippocampal neurons. PLoS ONE 9:e105944

    Article  PubMed Central  PubMed  Google Scholar 

  11. Xie H, Zhang J, Zhu J, Liu LX, Rebecchi M, Hu SM, Wang C (2014) Sevoflurane post-conditioning protects isolated rat hearts against ischemia–reperfusion injury via activation of the ERK1/2 pathway. Acta Pharmacol Sin 35:1504–1513

    Article  PubMed Central  PubMed  Google Scholar 

  12. Carr BI, Cavallini A, D’Alessandro R, Refolo MG, Lippolis C, Mazzocca A, Messa C (2014) Platelet extracts induce growth, migration and invasion in human hepatocellular carcinoma in vitro. BMC Cancer 14:43

    Article  PubMed Central  PubMed  Google Scholar 

  13. Selimoglu-Buet D, Gallais I, Denis N, Guillouf C, Moreau-Gachelin F (2012) Oncogenic kit triggers Shp2/Erk1/2 pathway to down-regulate the pro-apoptotic protein Bim and to promote apoptosis resistance in leukemic cells. PLoS ONE 7:e49052

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Haydn JM, Hufnagel A, Grimm J, Maurus K, Schartl M, Meierjohann S (2014) The MAPK pathway as an apoptosis enhancer in melanoma. Oncotarget 5:5040–5053

    PubMed Central  PubMed  Google Scholar 

  15. Zhang F, Li Y, Tang Z, Kumar A, Lee C, Zhang L, Zhu C, Klotzsche-von Ameln A, Wang B, Gao Z, Zhang S, Langer HF, Hou X, Jensen L, Ma W, Wong W, Chavakis T, Liu Y, Cao Y, Li X (2012) Proliferative and survival effects of PUMA promote angiogenesis. Cell Rep 2:1272–1285

    Article  CAS  PubMed  Google Scholar 

  16. Yang EJ, Park GH, Song KS (2013) Neuroprotective effects of liquiritigenin isolated from licorice roots on glutamate-induced apoptosis in hippocampal neuronal cells. Neurotoxicology 39:114–123

    Article  CAS  PubMed  Google Scholar 

  17. Meloni BP, Majda BT, Knuckey NW (2002) Evaluation of preconditioning treatments to protect near-pure cortical neuronal cultures from in vitro ischemia induced acute and delayed neuronal death. Brain Res 928:69–75

    Article  CAS  PubMed  Google Scholar 

  18. Zhao XC, Zhang LM, Li Q, Tong DY, Fan LC, An P, Wu XY, Chen WM, Zhao P, Wang J (2013) Isoflurane post-conditioning protects primary cultures of cortical neurons against oxygen and glucose deprivation injury via upregulation of Slit2/Robo1. Brain Res 1537:283–289

    Article  CAS  PubMed  Google Scholar 

  19. Zhu QL, Li YX, Zhou R, Ma NT, Chang RY, Wang TF, Zhang Y, Chen XP, Hao YJ, Jin SJ, Ma L, Du J, Sun T, Yu JQ (2014) Neuroprotective effects of oxysophocarpine on neonatal rat primary cultured hippocampal neurons injured by oxygen-glucose deprivation and reperfusion. Pharm Biol 52:1052–1059

    Article  CAS  PubMed  Google Scholar 

  20. Grabb MC, Choi DW (1999) Ischemic tolerance in murine cortical cell culture: critical role for NMDA receptors. J Neurosci 19:1657–1662

    CAS  PubMed  Google Scholar 

  21. Peng S, Kalikiri P, Mychaskiw G 2nd, Zhang D, Zhang Y, Liu GJ, Wang GL, Shen ZY (2011) Sevoflurane postconditioning ameliorates oxygen-glucose deprivation-reperfusion injury in the rat hippocampus. CNS Neurosci Ther 17:605–611

    Article  CAS  PubMed  Google Scholar 

  22. Rapoport M, Ferreira A (2000) PD98059 prevents neurite degeneration induced by fibrillar beta-amyloid in mature hippocampal neurons. J Neurochem 74:125–133

    Article  CAS  PubMed  Google Scholar 

  23. Sun Z, Han J, Zhao W, Zhang Y, Wang S, Ye L, Liu T, Zheng L (2014) TRPV1 activation exacerbates hypoxia/reoxygenation-induced apoptosis in H9C2 cells via calcium overload and mitochondrial dysfunction. Int J Mol Sci 15:18362–18380

    Article  PubMed Central  PubMed  Google Scholar 

  24. Sheng L, Ze Y, Wang L, Yu X, Hong J, Zhao X, Ze X, Liu D, Xu B, Zhu Y, Long Y, Lin A, Zhang C, Zhao Y, Hong F (2014) Mechanisms of TiO nanoparticle-induced neuronal apoptosis in rat primary cultured hippocampal neurons. J Biomed Mater Res Part A 103:1141

    Article  Google Scholar 

  25. Kapinya KJ, Lowl D, Futterer C, Maurer M, Waschke KF, Isaev NK, Dirnagl U (2002) Tolerance against ischemic neuronal injury can be induced by volatile anesthetics and is inducible NO synthase dependent. Stroke 33:1889–1898

    Article  CAS  PubMed  Google Scholar 

  26. Amrock LG, Starner ML, Murphy KL, Baxter MG (2014) Long-term effects of single or multiple neonatal sevoflurane exposures on rat hippocampal ultrastructure. Anesthesiology 122:87

    Article  Google Scholar 

  27. Wu B, Yu Z, You S, Zheng Y, Liu J, Gao Y, Lin H, Lian Q (2014) Physiological disturbance may contribute to neurodegeneration induced by isoflurane or sevoflurane in 14 day old rats. PLoS ONE 9:e84622

    Article  PubMed Central  PubMed  Google Scholar 

  28. Li QF, Zhu YS, Jiang H (2008) Isoflurane preconditioning activates HIF-1alpha, iNOS and Erk1/2 and protects against oxygen-glucose deprivation neuronal injury. Brain Res 1245:26–35

    Article  CAS  PubMed  Google Scholar 

  29. Inamura Y, Miyamae M, Sugioka S, Domae N, Kotani J (2010) Sevoflurane postconditioning prevents activation of caspase 3 and 9 through antiapoptotic signaling after myocardial ischemia–reperfusion. J Anesth 24:215–224

    Article  PubMed  Google Scholar 

  30. Seenath MM, Roberts D, Cawthorne C, Saunders MP, Armstrong GR, O’Dwyer ST, Stratford IJ, Dive C, Renehan AG (2008) Reciprocal relationship between expression of hypoxia inducible factor 1alpha (HIF-1alpha) and the pro-apoptotic protein bid in ex vivo colorectal cancer. Br J Cancer 99:459–463

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Xie L, Johnson RS, Freeman RS (2005) Inhibition of NGF deprivation-induced death by low oxygen involves suppression of BIMEL and activation of HIF-1. J Cell Biol 168:911–920

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Maroni P, Bendinelli P, Matteucci E, Locatelli A, Nakamura T, Scita G, Desiderio MA (2014) Osteolytic bone metastasis is hampered by impinging on the interplay among autophagy, anoikis and ossification. Cell Death Dis 5:e1005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Whelan KA, Schwab LP, Karakashev SV, Franchetti L, Johannes GJ, Seagroves TN, Reginato MJ (2013) The oncogene HER2/neu (ERBB2) requires the hypoxia-inducible factor HIF-1 for mammary tumor growth and anoikis resistance. J Biol Chem 288:15865–15877

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Kim H, Tu HC, Ren D, Takeuchi O, Jeffers JR, Zambetti GP, Hsieh JJ, Cheng EH (2009) Stepwise activation of BAX and BAK by tBID, BIM, and PUMA initiates mitochondrial apoptosis. Mol Cell 36:487–499

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Willis SN, Fletcher JI, Kaufmann T, van Delft MF, Chen L, Czabotar PE, Ierino H, Lee EF, Fairlie WD, Bouillet P, Strasser A, Kluck RM, Adams JM, Huang DC (2007) Apoptosis initiated when BH3 ligands engage multiple Bcl-2 homologs, not Bax or Bak. Science (New York, NY) 315:856–859

    Article  CAS  Google Scholar 

  36. Certo M, Del Gaizo Moore V, Nishino M, Wei G, Korsmeyer S, Armstrong SA, Letai A (2006) Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. Cancer Cell 9:351–365

    Article  CAS  PubMed  Google Scholar 

  37. Fu NY, Sukumaran SK, Kerk SY, Yu VC (2009) Baxbeta: a constitutively active human Bax isoform that is under tight regulatory control by the proteasomal degradation mechanism. Mol Cell 33:15–29

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NSFC (8143285).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojing Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Zhao, X. & Jiang, X. Sevoflurane Post-conditioning Protects Primary Rat Cortical Neurons Against Oxygen–Glucose Deprivation/Resuscitation: Roles of Extracellular Signal-Regulated Kinase 1/2 and Bid, Bim, Puma. Neurochem Res 40, 1609–1619 (2015). https://doi.org/10.1007/s11064-015-1639-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-015-1639-5

Keywords

Navigation