Skip to main content
Log in

Anticonvulsant Effect of Swertiamarin Against Pilocarpine-Induced Seizures in Adult Male Mice

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Epilepsy is one of the common and major neurological disorders, approximately a third of the individuals with epilepsy suffer from seizures and not able to successfully respond to available medications. Current study was designed to investigate whether Swertiamarin (Swe) had anticonvulsant activity in the pilocarpine (PILO)-treated mice. Thirty minutes prior to the PILO (280 mg/kg) injection, the mice were administrated with Swe (50, 150, and 450 mg/kg) and valproate sodium (VPA, 200 mg/kg) once. Seizures and electroencephalography (EEG) were observed, and then the mice were killed for Nissl, Fluoro-jade B (FJB) staining. Astrocytic activation was examined in the hippocampus. Western blot analysis was used to examine the expressions of interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and interleukin-10 (IL-10). The results indicated that pretreatment with Swe (150, 450 mg/kg) and VPA (200 mg/kg) significantly delayed the onset of the first convulsion and reduced the incidence of status epilepticus and mortality. Analysis of EEG recordings demonstrated that Swe (150, 450 mg/kg) and VPA (200 mg/kg) sharply decreased epileptiform discharges. Furthermore, Nissl and FJB staining revealed that Swe (150, 450 mg/kg) and VPA (200 mg/kg) relieved the neuronal damage. Additionally, Swe (450 mg/kg) dramatically inhibited astrocytic activation. Western blot analysis showed that Swe (450 mg/kg) significantly decreased the expressions of IL-1β, IL-6, TNF-α and elevated the expression of IL-10. Taken together, these findings revealed that Swe exerted anticonvulsant effects on PILO-treated mice. Further studies are encouraged to investigate these beneficial effects of Swe as an adjuvant in epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fisher RS, van Emde Boas W, Blume W, Elger C, Genton P, Lee P, Engel J Jr (2005) Epileptic seizures and epilepsy-definitions proposed by the international league against epilepsy (ILEA) and the international bureau for epilepsy (IBE). Epilepsia 46:470–472

    Article  PubMed  Google Scholar 

  2. Coelho VR, Vieira CG et al (2015) Antiepileptogenic, antioxidant and genotoxic evaluation of rosmarinic acid and its metabolite caffeic acid in mice. Life Sci 122:65–71

    Article  CAS  PubMed  Google Scholar 

  3. Dalic L, Cook MJ (2016) Managing drug-resistant epilepsy: challenges and solutions. Neuropsychiatr Dis Treat 12:2605–2616

    Article  PubMed  PubMed Central  Google Scholar 

  4. Simon RP, Greenberg DA, Aminof MJ (2009) Clinical neurology, 7th edn. McGraw-Hill, New York

    Google Scholar 

  5. Löscher W (2017) Animal models of seizures and epilepsy: past, present, and future role for the discovery of antiseizure drugs. Neurochem Res. doi:10.1007/s11064-017-2222-z [Epub ahead of print]

    Google Scholar 

  6. Castro OW, Furtado MA, Tilelli CQ et al (2010) Comparative neuroanatomical and temporal characterization of fluoro-jade-positive neurodegeneration after status epilepticus induced by systemic and intrahippocampal pilocarpine in wistar rats. Brain Res 1374:43–55

    Article  PubMed  Google Scholar 

  7. Shapiro LA, Wang L, Ribak CE (2008) Rapid astrocyte and microglial activation following pilocarpine-induced seizures in rats. Epilepsia 49:33–41

    Article  CAS  PubMed  Google Scholar 

  8. Vezzani A, Dingledine R, Rossetti AO (2015) Immunity and inflammation in status epilepticus and its sequelae: possibilities for therapeutic application. Expert Rev Neurother 15:1081–1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vezzani A, Lang B, Aronica E (2015) Immunity and inflammation in epilepsy. Cold Spring Harb Perspect Med 6(2):a022699

    Article  PubMed  Google Scholar 

  10. Dambach H, Hinkerohe D, Prochnow N, Stienen MN, Moinfar Z, Haase CG, Hufnagel A, Faustmann PM (2014) Glia and epilepsy: experimental investigation of antiepileptic drugs in an astroglia/microglia co-culture model of inflammation. Epilepsia 55(1):184–192

    Article  CAS  PubMed  Google Scholar 

  11. Robel S, Sontheimer H (2016) Glia as drivers of abnormal neuronal activity. Nat Neurosci 19:28–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shen Y, Qin H, Chen J et al (2016) Postnatal activation of TLR4 in astrocytes promotes excitatory synaptogenesis in hippocampal neurons. J Cell Biol 215:719–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Burda JE, Sofroniew MV (2014) Reactive gliosis and the multicellular response to cns damage and disease. Neuron 81:229–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Aronica E, Crino PB (2011) Inflammation in epilepsy: clinical observations. Epilepsia 52:26–32

    Article  PubMed  Google Scholar 

  15. Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119:7–35

    Article  PubMed  Google Scholar 

  16. Vezzani A, Balosso S, Ravizza T (2012) Inflammation and epilepsy. Handb Clin Neurol 107:163–175

    Article  PubMed  Google Scholar 

  17. Vezzani A, Friedman A, Dingledine RJ (2013) The role of inflammation in epileptogenesis. Neuropharmacology 69:16–24

    Article  CAS  PubMed  Google Scholar 

  18. Jiang J, Yang MS, Quan Y, Gueorguieva P, Ganesh T, Dingledine R (2015) Therapeutic window for cyclooxygenase-2 related anti-inflammatory therapy after status epilepticus. Neurobiol Dis 76:126–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Du Y, Kemper T, Qiu J, Jiang J (2016) Defining the therapeutic time window for suppressing the inflammatory prostaglandin E2 signaling after status epilepticus. Expert Rev Neurother 16:123–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Serrano GE, Lelutiu N, Rojas A, Cochi S, Shaw R, Makinson CD, Wang D, Fitz Gerald GA, Dingledine R (2011) Ablation of cyclooxygenase-2 in forebrain neurons is neuroprotective and dampens brain inflammation after status epilepticus. J Neurosci 31:14850–14860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ishizaki Y, Kira R, Fukuda M, Torisu H, Sakai Y, Sanefuji M, Yukaya N, Hara T (2009) Interleukin-10 is associated with resistance to febrile seizures: genetic association and experimental animal studies. Epilepsia 50:761–767

    Article  CAS  PubMed  Google Scholar 

  22. Zhou Z, Peng X, Insolera R, Fink DJ, Mata M (2009) Interleukin-10 provides direct trophic support to neurons. J Neurochem 110:1617–1627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. McAuley JW, McFadden LS, Elliott JO, Shneker BF (2008) An evaluation of self management behaviours and medication adherence in patients with epilepsy. Epilepsy Behav 13:637–641

    Article  PubMed  Google Scholar 

  24. Perucca E, French J, Bialer M (2007) Development of new antiepileptic drugs: challenges, incentives, and recent advances. Lancet Neurol 6:793–804

    Article  CAS  PubMed  Google Scholar 

  25. Kaminski RM, Rogawski MA, Klitgaard H (2014) The potential of antiseizure drugs and agents that act on novel molecular targets as antiepileptogenic treatments. Neurotherapeutics 11:385–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kowski AB, Weissinger F, Gaus V, Fidzinski P, Losch F, Holtkamp M (2016) Specific adverse effects of antiepileptic drugs—A true-to-life monotherapy study. Epilepsy Behav 54:150–157

    Article  PubMed  Google Scholar 

  27. Jia N, Li Y et al (2016) Iridoid glycosides from the flowers of Gentiana macrophylla Pall. Ameliorate collagen-induced arthritis in rats. J Ethnopharmacol 189:1–9

    Article  PubMed  Google Scholar 

  28. Lu CM, Lin LC, Tsai TH (2014) Determination and pharmacokinetic study of gentiopicroside, geniposide, baicalin, and swertiamarin in chinese herbal formulae after oral administration in rats by LC-MS/MS. Molecules 19:21560–21578

    Article  PubMed  Google Scholar 

  29. Saravanan S, Pandikumar P et al (2014) In vivo and in vitro immunomodulatory potential of swertiamarin isolated from Enicostema axillare (Lam.) A. Raynal that acts as an anti-inflammatory agent. Inflammation 37:1374–1388

    Article  CAS  PubMed  Google Scholar 

  30. Saravanan S, Islam VI et al (2014) Swertiamarin attenuates inflammation mediators via modulating NF-κB/IκB and JAK2/STAT3 transcription factors in adjuvant induced arthritis. Eur J Pharm Sci 56:70–86

    Article  CAS  PubMed  Google Scholar 

  31. Jaishree V, Badami S, Rupesh Kumar M, Tamizhmani T (2009) Antinociceptive activity of swertiamarin isolated from enicostemma axillare. Phytomedicine 16(2–3):227–232

    Article  CAS  PubMed  Google Scholar 

  32. Racine RJ (1972) Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophysiol 32:281–294

    Article  CAS  PubMed  Google Scholar 

  33. Carrasco-Pozo C, Tan KN, Borges K (2015) Sulforaphane is anticonvulsant and improves mitochondrial function. J Neurochem 135:932–942

    Article  CAS  PubMed  Google Scholar 

  34. Brophy GM, Bell R et al (2012) Guidelines for the evaluation and management of status epilepticus. Neurocrit Care 17:3–23

    Article  PubMed  Google Scholar 

  35. Iyengar SS, LaFrancois JJ et al (2015) Suppression of adult neurogenesis increases the acute effects of kainic acid. Exp Neurol 264:135–149

    Article  CAS  PubMed  Google Scholar 

  36. Liu G, Wang J, Deng XH, Yu JQ et al (2017) The anticonvulsant and neuroprotective effects of oxysophocarpine on pilocarpine-induced convulsions in adult male mice. Cell Mol Neurobiol 37(2):339–349

    Article  CAS  PubMed  Google Scholar 

  37. Anderson KJ, Miller KM, Fugaccia I, Scheff SW (2005) Regional distribution of Fluoro-jade B staining in the hippocampus following traumatic brain injury. Exp Neurol 193:125–130

    Article  CAS  PubMed  Google Scholar 

  38. Kamphuis W, Mamber C et al (2012) GFAP isoforms in adult mouse brain with a focus on neurogenic astrocytes and reactive astrogliosis in mouse models of Alzheimer disease. PLoS ONE 7:e42823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Duncan JS, Sander JW, Sisodiya SM, Walker MC (2006) Adult epilepsy. Lancet 367:1087–1100

    Article  PubMed  Google Scholar 

  40. Mazzuferi M, Kumar G, Rospo C, Kaminski RM (2012) Rapid epileptogenesis in the mouse pilocarpine model: video-EEG, pharmacokinetic and histopathological characterization. Exp Neurol 238:156–167

    Article  CAS  PubMed  Google Scholar 

  41. Xanthos DN, Sandkühler J (2014) Neurogenic neuroinflammation: inflammatory CNS reactions in response to neuronal activity. Nat Rev Neurosci 15:43–53

    Article  CAS  PubMed  Google Scholar 

  42. Dalkara S, Karakurt A (2012) Recent progress in anticonvulsant drug research: strategies for anticonvulsant drug development and applications of antiepileptic drugs for non-epileptic central nervous system disorders. Curr Top Med Chem 12:1033–1071

    Article  CAS  PubMed  Google Scholar 

  43. Henneberger C, Steinhäuser C (2016) Astrocytic TLR4 at the crossroads of inflammation and seizure susceptibility. J Cell Biol 215:607–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sloan SA, Barres BA (2014) Mechanisms of astrocyte development and their contributions to neurodevelopmental disorders. Curr Opin Neurobiol 27:75–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chung WS, Welsh CA, Barres BA, Stevens B (2015) Do glia drive synaptic and cognitive impairment in disease? Nat Neurosci 18:1539–1545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sherafat MA, Ronaghi A et al (2013) Kindling-induced learning deficiency and possible cellular and molecular involved mechanisms. Neurol Sci 34:883–890

    Article  PubMed  Google Scholar 

  47. Ortinski PI, Dong J et al (2010) Selective induction of astrocytic gliosis generates deficits in neuronal inhibition. Nat Neurosci 13:584–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Devinsky O, Vezzani A, Najjar S, De Lanerolle NC, Rogawski MA (2013) Glia and epilepsy: excitability and inflammation. Trends Neurosci 36:174–184

    Article  CAS  PubMed  Google Scholar 

  49. Vezzani A, Baram TZ (2007) New roles for interleukin-1 beta in the mechanisms of epilepsy. Epilepsy Curr 7:45–50

    Article  PubMed  PubMed Central  Google Scholar 

  50. Uludag IF, Duksal T, Tiftikcioglu BI, Zorlu Y, Ozkaya F, Kirkali G (2015) IL-1β, IL-6 and IL-1Ra levels in temporal lobe epilepsy. Seizure 26:22–25

    Article  PubMed  Google Scholar 

  51. Vezzani A, Aronica E, Mazarati A, Pittman QJ (2013) Epilepsy and brain inflammation. Exp Neurol 244:11–21

    Article  CAS  PubMed  Google Scholar 

  52. Xiao Z, Peng J, Yang L, Kong H, Yin F (2015) Interleukin-1β plays a role in the pathogenesis of mesial temporal lobe epilepsy through the PI3K/Akt/mTOR signaling pathway in hippocampal neurons. J Neuroimmunol 282:110–117

    Article  CAS  PubMed  Google Scholar 

  53. Auvin S, Shin D, Mazarati A, Sankar R (2010) Inflammation induced by LPS enhances epileptogenesis in immature rat and may be partially reversed by IL1RA. Epilepsia 51:34–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ravizza T, Vezzani A (2006) Status epilepticus induces time-dependent neuronal and astrocytic expression of interleukin-1 receptor type I in the rat limbic system. Neuroscience 137:301–308

    Article  CAS  PubMed  Google Scholar 

  55. Wang Y, Qin ZH (2010) Molecular and cellular mechanisms of excitotoxic neuronal death. Apoptosis 15:1382–1402

    Article  CAS  PubMed  Google Scholar 

  56. Dey A, Kang X, Qiu J, Du Y, Jiang J (2016) Anti-inflammatory small molecules to treat seizures and epilepsy: from bench to bedside. Trends Pharmacol Sci 37:463–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rojas A, Jiang J, Ganesh T, Yang MS, Lelutiu N, Gueorguieva P, Dingledine R (2014) Cyclooxygenase-2 in epilepsy. Epilepsia 55:17–25

    Article  CAS  PubMed  Google Scholar 

  58. Sharma S, Yang B, Xi X, Grotta JC, Aronowski J, Savitz SI (2011) IL-10 directly protects cortical neurons by activating PI-3 kinase and STAT-3 pathways. Brain Res 1373:189–194

    Article  CAS  PubMed  Google Scholar 

  59. Alsharafi WA, Xiao B, Abuhamed MM, Bi F-F, Luo Z-H (2015) Correlation between IL-10 and microRNA-187 expression in epileptic rat hippocampus and patients with temporal lobe epilepsy. Front Cell Neurosci 9:466. doi:10.3389/fncel.2015.00466

    Article  PubMed  PubMed Central  Google Scholar 

  60. Gouveia TL, Scorza FA et al (2014) Lovastatin decreases the synthesis of inflammatory mediators during epileptogenesis in the hippocampus of rats submitted to pilocarpine-induced epilepsy. Epilepsy Behav 36:68–73

    Article  CAS  PubMed  Google Scholar 

  61. Barker-Haliski ML, Heck TD, Dahle EJ, Vanegas F, Pruess TH, Wilcox KS, White HS (2016) Acute treatment with minocycline, but not valproic acid, improves long-term behavioral outcomes in the Theiler’s virus model of temporal lobe epilepsy. Epilepsia 57:1958–1967

    Article  CAS  PubMed  Google Scholar 

  62. Mishra A, Goel RK (2015) Comparative behavioral and neurochemical analysis of phenytoin and valproate treatment on epilepsy induced learning and memory deficit: search for add on therapy. Metab Brain Dis 30:951–958

    Article  CAS  PubMed  Google Scholar 

  63. Borham LE, Mahfoz AM et al (2016) The effect of some immunomodulatory and anti-inflammatory drugs on Li-pilocarpine-induced epileptic disorders in wistar rats. Brain Res 1648:418–424

    Article  CAS  PubMed  Google Scholar 

  64. Ezz HS, Khadrawy YA, Noor NA (2011) The neuroprotective effect of curcumin and nigella sativa oil against oxidative stress in the pilocarpine model of epilepsy: a comparison with valproate. Neurochem Res 36:2195–2204

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Ningxia Hui Autonomous Region science and technology support program (Grant No. 2015BAK45B01) and the Ningxia 13th Plan of 5-year major scientific program (Grant No. 2016BZ 07). We are indebted to the staff in the Animal Center and the Science and Technology Centre who provided assistance in the study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ru Zhou or Jian-Qiang Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, XH., Zhang, X., Wang, J. et al. Anticonvulsant Effect of Swertiamarin Against Pilocarpine-Induced Seizures in Adult Male Mice. Neurochem Res 42, 3103–3113 (2017). https://doi.org/10.1007/s11064-017-2347-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-017-2347-0

Keywords

Navigation