Skip to main content

Advertisement

Log in

Comparative behavioral and neurochemical analysis of phenytoin and valproate treatment on epilepsy induced learning and memory deficit: Search for add on therapy

  • Research Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Our previous work demonstrated, chronic epilepsy affects learning and memory of rodents along with peculiar neurochemical changes in discrete brain parts. Most commonly used antiepileptic drugs (phenytoin and sodium valproate) also worsen learning and memory in the patients with epilepsy. Therefore this study was designed to carry out comparison of behavioral and neurochemical changes with phenytoin and sodium valproate treatment in pentylenetetrazole-kindling induced learning and memory deficit to devise add on therapy for this menace. For the experimental epilepsy, animals were kindled using PTZ (35 mg/kg; i.p., at 48 ± 2 h intervals) and successful kindled animals were involved in the study. These kindled animals were treated with saline, phenytoin (30 mg/kg/day, i.p.) and sodium valproate (300 mg/kg/day, i.p.) for 20 days. These animals were challenged with PTZ challenging dose (35 mg/kg) on day 5, 10, 15 and 20 to evaluate the effect on seizure severity score on different days. Effect on learning and memory was evaluated using elevated plus maze and passive shock avoidance paradigm. On day 20, after behavioral evaluations, animals were sacrificed to analyze glutamate, GABA, norepinephrine, dopamine, serotonin, total nitrite level and acetylcholinesterase level in cortex and hippocampus. Behavioral evaluations suggested that phenytoin and sodium valproate treatment significantly reduced seizure severity in the kindled animals, while sodium valproate treatment controls seizures with least memory deficit in comparison to phenytoin. Neurochemical findings revealed that elevated cortical acetylcholinesterase level could be one of the responsible factors leading to memory deficit in phenytoin treated animals. However sodium valproate treatment reduced cortical acetylcholinesterase level and had least debilitating consequences on memory deficit. Therefore, attenuation of elevated AChE activity can be one of add-on approach for management of memory deficit associated with conventional AEDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alam AM, Starr MS (1993) Dopaminergic modulation of pilocarpine-induced motor seizures in the rat: the role of hippocampal D2 receptors. Neuroscience 53:425–431

    Article  CAS  PubMed  Google Scholar 

  • Aldenkamp AP, Alpherts WC, Diepman L, van’t Slot B, Overweg J, Vermeulen J (1994) Cognitive side-effects of phenytoin compared with carbamazepine in patients with localization-related epilepsy. Epilepsy Res 19:37–43

    Article  CAS  PubMed  Google Scholar 

  • Alexander GE (2004) Biology of Parkinson’s disease: pathogenesis and pathophysiology of a multisystem neurodegenerative disorder. Dialogues Clin Neurosci 6:259–280

    PubMed Central  PubMed  Google Scholar 

  • Baf MH, Subhash MN, Lakshmana KM, Rao BS (1994) Sodium valproate induced alterations in monoamine levels in different regions of the rat brain. Neurochem Int 24:67–72

    Article  CAS  PubMed  Google Scholar 

  • Balding F Jr, Geller HM (1981) Sodium valproate enhancement of gamma-aminobutyric acid (GABA) inhibition: electrophysiological evidence for anticonvulsant activity. J Pharmacol Exp Ther 217:445–450

    Google Scholar 

  • Beeri R, Le Novere N, Mervis R, Huberman T, Grauer E, Changeux JP, Soreq H (1997) Enhanced hemicholinium binding and attenuated dendrite branching in cognitively impaired acetylcholinesterase-transgenic mice. J Neurochem 69:2441–2451

    Article  CAS  PubMed  Google Scholar 

  • Blake KV, Massey KL, Hendeles L, Nickerson D, Neims A (1988) Relative efficacy of phenytoin and phenobarbital for the prevention of theophylline-induced seizures in mice. Ann Emerg Med 17:1024–1028

    Article  CAS  PubMed  Google Scholar 

  • Bohnen NI, Kaufer DI, Hendrickson R, Ivanco LS, Lopresti BJ, Koeppe RA, Meltzer CC, Constantine G, Davis JG, Mathis CA, Dekosky ST, Moore RY (2005) Degree of inhibition of cortical acetylcholinesterase activity and cognitive effects by donepezil treatment in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 76:315–319

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Choudhary KM, Mishra A, Goel RK (2013) Ameliorative effect of curcumin on seizure severity, depression like behavior, learning and memory deficit in post pentylenetetrazole-kindled mice. Eur J Pharmacol 704:33–40

    Article  CAS  PubMed  Google Scholar 

  • Friedman A, Behrens CJ, Heinemann U (2007) Cholinergic dysfunction in temporal lobe epilepsy. Epilepsia 48:126–130

    Article  CAS  PubMed  Google Scholar 

  • Gaitatzis A, Carroll K, Majeed A, Sander W (2004) The epidemiology of the comorbidity of epilepsy in the general population. Epilepsia 45:1613–1622

    Article  PubMed  Google Scholar 

  • Grecksch G, Becker A, Rauca C (1997) Effect of age on pentylenetetrazol-kindling and kindling-induced impairments of learning performance. Pharmacol Biochem Behav 56:595–601

    Article  CAS  PubMed  Google Scholar 

  • Griffith HR, Martin R, Andrews S, LeBron PA, Ware J, Faught E, Welty T (2008) The safety and tolerability of galantamine in patients with epilepsy and memory difficulties. Epilepsy Behav 13:376–380

    Article  PubMed  Google Scholar 

  • Gupta YK, Veerendra Kumar MH, Srivastava AK (2003) Effect of Centella asiatica on pentylenetetrazole-induced kindling, cognition and oxidative stress in rats. Pharmacol Biochem Behav 74:579–585

    Article  CAS  PubMed  Google Scholar 

  • Hardingham NR, Bannister NJ, Read JC, Fox KD, Hardingham GE, Jack JJ (2006) Extracellular calcium regulates postsynaptic efficacy through group 1 metabotropic glutamate receptors. J Neurosci 26:6337–6345

    Article  CAS  PubMed  Google Scholar 

  • Izumi Y, Tokuda K, Zorumski CF (2008) Long-term potentiation inhibition by low-level N-methyl-D-aspartate receptor activation involves calcineurin, nitric oxide, and p38 mitogen-activated protein kinase. Hippocampus 18:258–265

    Article  CAS  PubMed  Google Scholar 

  • Ji WQ, Zhang CC, Zhang GH (1995) Effect of somatostatin and GABA on long-term potentiation in hippocampal CA1 are in rats. Zhongguo Yao Li XueBao 16:380–382

    CAS  Google Scholar 

  • Karabiber H, Yakinci C, Durmaz Y, Temel I, Mehmet N (2004) Serum nitrite and nitrate levels in epileptic children using valproic acid or carbamazepine. Brain Dev 26:15–18

    Article  PubMed  Google Scholar 

  • Komatsu Y, Yoshimura Y (2000) Activity-dependent maintenance of long-term potentiation at visual cortical inhibitory synapses. J Neurosci 20:7539–7546

    CAS  PubMed  Google Scholar 

  • LaFrance WC Jr, Kanner AM, Hermann B (2008) Psychiatric comorbidities in epilepsy. Int Rev Neurobiol 83:347–383

    Article  PubMed  Google Scholar 

  • Lemon N, Manahan-Vaughan D (2006) Dopamine D1/D5 receptors gate the acquisition of novel information through hippocampal long-term potentiation and long-term depression. J Neurosci 26:7723–7729

    Article  CAS  PubMed  Google Scholar 

  • Marson AG, Appleton R, Baker GA, Chadwick DW, Doughty J, Eaton B, Gamble C, Jacoby A, Shackley P, Smith DF, Tudur-Smith C, Vanoli A, Williamson PR (2007) A randomised controlled trial examining the longer-term outcomes of standard versus new antiepileptic drugs. The SANAD trial. Health Technol Assess 11:1–134

    Article  Google Scholar 

  • Meador KJ, Loring DW, Moore EE, Thompson WO, Nichols ME, Oberzan RE, Durkin MW, Gallagher BB, King DW (1995) Comparative cognitive effects of phenobarbital, phenytoin, and valproate in healthy adults. Neurology 45:1494–1499

    Article  CAS  PubMed  Google Scholar 

  • Meshkibaf MH, Subhash MN, Lakshmana KM, Rao BS (1995) Effect of chronic administration of phenytoin on regional monoamine levels in rat brain. Neurochem Res 20:773–778

    Article  CAS  PubMed  Google Scholar 

  • Mishra A, Goel RK (2012) Age dependent learning and memory deficit in pentylenetetrazol kindled mice. Eur J Pharmacol 674:315–320

    Article  CAS  PubMed  Google Scholar 

  • Mishra A, Goel RK (2013) Psychoneurochemical investigations to reveal neurobiology of memory deficit in epilepsy. Neurochem Res 38:2503–2515

    Article  CAS  PubMed  Google Scholar 

  • Mishra A, Goel RK (2014) Adjuvant anticholinesterase therapy for the management of epilepsy-induced memory deficit: a critical pre-clinical study. Basic Clin Pharmacol Toxicol 115:512–517

    Article  CAS  PubMed  Google Scholar 

  • Mori A, Hiramatsu M, Namba S, Nishimoto A, Ohmoto T, Mayanagi Y, Asakura T (1987) Decreased dopamine level in the epileptic focus. Res Commun Chem Pathol Pharmacol 56:157–164

    CAS  PubMed  Google Scholar 

  • Owens MJ, Nemeroff CB (2003) Pharmacology of valproate. Psychopharmacol Bull 37:17–24

    PubMed  Google Scholar 

  • Pincus JH, Lee S (1973) Diphenylhydantoin and calcium. Arch Neurol 26:239–244

    Article  Google Scholar 

  • Pourmotabbed A, Nedaei SE, Cheraghi M, Moradian S, Touhidi A, Aeinfar M, Seyfi Z, Pourmotabbed T (2011) Effect of prenatal pentylenetetrazol-induced kindling on learning and memory of male offspring. Neuroscience 172:205–211

    Article  CAS  PubMed  Google Scholar 

  • Raju SS, Gopalakrishna HN, Venkatadri N (1998) Effect of propranolol and nifedipine on maximal electroshock-induced seizures in mice: individually and in combination. Pharmacol Res 38:449–452

    Article  CAS  PubMed  Google Scholar 

  • Ristić AJ, Vojvodić N, Janković S, Sindelić A, Sokić D (2006) The frequency of reversible parkinsonism and cognitive decline associated with valproate treatment: a study of 364 patients with different types of epilepsy. Epilepsia 47:2183–2185

    Article  PubMed  Google Scholar 

  • Ruiz A, Campanac E, Scott RS, Rusakov DA, Kullmann DM (2010) Presynaptic GABAA receptors enhance transmission and LTP induction at hippocampal mossy fiber synapses. Nat Neurosci 13:431–438

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Singh D, Mishra A, Goel RK (2013) Effect of saponin fraction from ficusreligiosa on memory deficit, behavioral and biochemical impairments in pentylenetetrazol kindled mice. Epilepsy Behav 27:206–211

    Article  PubMed  Google Scholar 

  • Stringer JL, Lothman EW (1989) Model of spontaneous hippocampal epilepsy in the anaesthetized rat: [K+]o, and [Ca2+]o response patterns. Epilepsy Res 4:177–186

    Article  CAS  PubMed  Google Scholar 

  • Sudha S, Lakshmana MK, Pradhan N (1995) Chronic phenytoin induced impairment of learning and memory with associated changes in brain acetylcholine esterase activity and monoamine levels. Pharmacol Biochem Behav 52:119–124

    Article  CAS  PubMed  Google Scholar 

  • Sun W, Wang Y, Wang W, Wu X (2008) Attention changes in epilepsy patients following 3-month topiramate or valproate treatment revealed by event-related potential. Int J Psychophysiol 68:235–241

    Article  PubMed  Google Scholar 

  • Suppes T, Kriegstein AR, Prince DA (1985) The influence of dopamine on epileptiform burst activity in hippocampal pyramidal neurons. Brain Res 326:273–280

    Article  CAS  PubMed  Google Scholar 

  • Takechi K, Suemaru K, Kawasaki H, Araki H (2012) Impaired memory following repeated pentylenetetrazol treatments in kindled mice. Yakugaku Zasshi 132:179–182

    Article  CAS  PubMed  Google Scholar 

  • Thompson P, Huppert FA, Trimble M (1981) Phenytoin and cognitive function: effects on normal volunteers and implications for epilepsy. Br J Clin Psychol 20:155–162

    Article  CAS  PubMed  Google Scholar 

  • Trimble MR, Thompson PJ (1984) Sodium valproate and cognitive function. Epilepsia 25:S60–S64

    Article  PubMed  Google Scholar 

  • Yaari Y, Selzer ME, Pincus JH (1986) Phenytoin: mechanisms of its anticonvulsant action. Ann Neurol 20:171–184

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Indian Council of Medical Research, New Delhi, India for funding of this research work (Grant No. 45/33/2010/PHA-BMS).

Conflict of interest

The authors declare that they have no conflicts of interest related to this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Kumar Goel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, A., Goel, R.K. Comparative behavioral and neurochemical analysis of phenytoin and valproate treatment on epilepsy induced learning and memory deficit: Search for add on therapy. Metab Brain Dis 30, 951–958 (2015). https://doi.org/10.1007/s11011-015-9650-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-015-9650-8

Keywords

Navigation