Skip to main content

Advertisement

Log in

The Contribution of Necroptosis in Neurodegenerative Diseases

  • Review Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Over the past decades, cell apoptosis has been significantly reputed as an accidental, redundant and alternative manner of cell demise which partakes in homeostasis in the development of extensive diseases. Nevertheless, necroptosis, another novel manner of cell death through a caspase-independent way, especially in neurodegenerative diseases remains ambiguous. The cognition of this form of cell demise is helpful to understand other forms of morphological resemblance of necrosis. Additionally, the concrete signal mechanism in the regulation of necroptosis is beneficial to the diagnosis and treatment of neurodegenerative diseases. Recent studies have demonstrated that necroptotic inhibitor, 24(S)-Hydroxycholesterol and partial specific histone deacetylase inhibitors could alleviate pathogenetic conditions of neurodegenerative diseases via necroptosis pathway. In this review, we summarize recent researches about mechanisms and modulation of necroptotic signaling pathways and probe into the role of programmed necroptotic cell demise in neurodegenerative diseases such as Parkinson’s disease, Multiple sclerosis, Amyotrophic lateral sclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Clarke PG (1990) Developmental cell death: morphological diversity and multiple mechanisms. Anat Embryol 181:195–213

    Article  CAS  PubMed  Google Scholar 

  2. Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, Dawson TM, Dawson VL, El-Deiry WS, Fulda S, Gottlieb E, Green DR, Hengartner MO, Kepp O, Knight RA, Kumar S, Lipton SA, Lu X, Madeo F, Malorni W, Mehlen P, Nunez G, Peter ME, Piacentini M, Rubinsztein DC, Shi Y, Simon HU, Vandenabeele P, White E, Yuan J, Zhivotovsky B, Melino G, Kroemer G (2012) Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ 19:107–120

    Article  CAS  PubMed  Google Scholar 

  3. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hotchkiss RS, Strasser A, McDunn JE, Swanson PE (2009) Cell death. N Engl J Med 361:1570–1583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Metzstein MM, Stanfield GM, Horvitz HR (1998) Genetics of programmed cell death in C. elegans: past, present and future. Trends Genet 14:410–416

    Article  CAS  PubMed  Google Scholar 

  6. Galluzzi L, Maiuri MC, Vitale I, Zischka H, Castedo M, Zitvogel L, Kroemer G (2007) Cell death modalities: classification and pathophysiological implications. Cell Death Differ 14:1237–1243

    Article  CAS  PubMed  Google Scholar 

  7. Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, Blagosklonny MV, El-Deiry WS, Golstein P, Green DR, Hengartner M, Knight RA, Kumar S, Lipton SA, Malorni W, Nunez G, Peter ME, Tschopp J, Yuan J, Piacentini M, Zhivotovsky B, Melino G, Nomenclature Committee on Cell D (2009) Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ 16:3–11

    Article  CAS  PubMed  Google Scholar 

  8. Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N, Cuny GD, Mitchison TJ, Moskowitz MA, Yuan J (2005) Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1:112–119

    Article  CAS  PubMed  Google Scholar 

  9. Vanlangenakker N, Vanden Berghe T, Vandenabeele P (2012) Many stimuli pull the necrotic trigger, an overview. Cell Death Differ 19:75–86

    Article  CAS  PubMed  Google Scholar 

  10. Nikseresht S, Khodagholi F, Nategh M, Dargahi L (2015) RIP1 inhibition rescues from LPS-induced RIP3-mediated programmed cell death, distributed energy metabolism and spatial memory impairment. J Mol Neurosci 57:219–230

    Article  CAS  PubMed  Google Scholar 

  11. Strilic B, Yang L, Albarran-Juarez J, Wachsmuth L, Han K, Muller UC, Pasparakis M, Offermanns S (2016) Tumour-cell-induced endothelial cell necroptosis via death receptor 6 promotes metastasis. Nature 536:215–218

    Article  CAS  PubMed  Google Scholar 

  12. Skotte NH, Sanders SS, Singaraja RR, Ehrnhoefer DE, Vaid K, Qiu X, Kannan S, Verma C, Hayden MR (2016) Palmitoylation of caspase-6 by HIP14 regulates its activation. Cell Death Differ. doi:10.1038/cdd.2016.139

    PubMed  Google Scholar 

  13. Zhang T, Zhang Y, Cui M, Jin L, Wang Y, Lv F, Liu Y, Zheng W, Shang H, Zhang J, Zhang M, Wu H, Guo J, Zhang X, Hu X, Cao CM, Xiao RP (2016) CaMKII is a RIP3 substrate mediating ischemia- and oxidative stress-induced myocardial necroptosis. Nat Med 22:175–182

    Article  PubMed  Google Scholar 

  14. Wen S, Ling Y, Yang W, Shen J, Li C, Deng W, Liu W, Liu K (2016) Necroptosis is a key mediator of enterocytes loss in intestinal ischaemia/reperfusion injury. J Cell Mol Med. doi:10.1111/jcmm.12987

    Google Scholar 

  15. Xu Y, Wang J, Song X, Qu L, Wei R, He F, Wang K, Luo B (2016) RIP3 induces ischemic neuronal DNA degradation and programmed necrosis in rat via AIF. Sci Rep 6:29362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fan H, Tang HB, Kang J, Shan L, Song H, Zhu K, Wang J, Ju G, Wang YZ (2015) Involvement of endoplasmic reticulum stress in the necroptosis of microglia/macrophages after spinal cord injury. Neuroscience 311:362–373

    Article  CAS  PubMed  Google Scholar 

  17. Zhu Y, Cui H, Xia Y, Gan H (2016) RIPK3-mediated necroptosis and apoptosis contributes to renal tubular cell progressive loss and chronic kidney disease progression in rats. PloS ONE 11:e0156729

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wu JR, Wang J, Zhou SK, Yang L, Yin JL, Cao JP, Cheng YB (2015) Necrostatin-1 protection of dopaminergic neurons. Neural Regen Res 10:1120–1124

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ito Y, Ofengeim D, Najafov A, Das S, Saberi S, Li Y, Hitomi J, Zhu H, Chen H, Mayo L, Geng J, Amin P, DeWitt JP, Mookhtiar AK, Florez M, Ouchida AT, Fan JB, Pasparakis M, Kelliher MA, Ravits J, Yuan J (2016) RIPK1 mediates axonal degeneration by promoting inflammation and necroptosis in ALS. Science 353:603–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Politi K, Przedborski S (2016) Axonal degeneration: RIPK1 multitasking in ALS. Curr Biol 26:R932–R934

    Article  CAS  PubMed  Google Scholar 

  21. Ofengeim D, Ito Y, Najafov A, Zhang Y, Shan B, DeWitt JP, Ye J, Zhang X, Chang A, Vakifahmetoglu-Norberg H, Geng J, Py B, Zhou W, Amin P, Berlink Lima J, Qi C, Yu Q, Trapp B, Yuan J (2015) Activation of necroptosis in multiple sclerosis. Cell Rep 10:1836–1849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fan H, Zhang K, Shan L, Kuang F, Chen K, Zhu K, Ma H, Ju G, Wang YZ (2016) Reactive astrocytes undergo M1 microglia/macrohpages-induced necroptosis in spinal cord injury. Mol Neurodegen 11:14

    Article  Google Scholar 

  23. Wu C, Chen J, Liu Y, Zhang J, Ding W, Wang S, Bao G, Xu G, Sun Y, Wang L, Chen L, Gu H, Cui B, Cui Z (2016) Upregulation of PSMB4 is associated with the necroptosis after spinal cord injury. Neurochem Res. doi: 10.1007/s11064-016-2033-7

    Google Scholar 

  24. Barabino A, Plamondon V, Abdouh M, Chatoo W, Flamier A, Hanna R, Zhou S, Motoyama N, Hebert M, Lavoie J, Bernier G (2016) Loss of Bmi1 causes anomalies in retinal development and degeneration of cone photoreceptors. Development 143:1571–1584

    Article  CAS  PubMed  Google Scholar 

  25. Viringipurampeer IA, Metcalfe AL, Bashar AE, Sivak O, Yanai A, Mohammadi Z, Moritz OL, Gregory-Evans CY, Gregory-Evans K (2016) NLRP3 inflammasome activation drives bystander cone photoreceptor cell death in a P23H rhodopsin model of retinal degeneration. Hum Mol Genet 25:1501–1516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kim HI, Paik SS, Kim GH, Kim M, Kim SH, Kim IB (2016) Neuroprotective effect of NecroX-5 against retinal degeneration in rodents. Neuroreport 27:1128–1133

    Article  CAS  PubMed  Google Scholar 

  27. Qu Y, Shi J, Tang Y, Zhao F, Li S, Meng J, Tang J, Lin X, Peng X, Mu D (2016) MLKL inhibition attenuates hypoxia-ischemia induced neuronal damage in developing brain. Exp Neurol 279:223–231

    Article  CAS  PubMed  Google Scholar 

  28. Kong D, Zhu J, Liu Q, Jiang Y, Xu L, Luo N, Zhao Z, Zhai Q, Zhang H, Zhu M, Liu X (2016) Mesenchymal stem cells protect neurons against hypoxic-ischemic injury via inhibiting parthanatos, necroptosis, and apoptosis, but not autophagy. Cell Mol Neurobiol. doi:10.1007/s10571-016-0370-3

    PubMed  Google Scholar 

  29. Cougnoux A, Cluzeau C, Mitra S, Li R, Williams I, Burkert K, Xu X, Wassif CA, Zheng W, Porter FD (2016) Necroptosis in Niemann-Pick disease, type C1: a potential therapeutic target. Cell Death Dis 7:e2147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu T, Zhao DX, Cui H, Chen L, Bao YH, Wang Y, Jiang JY (2016) Therapeutic hypothermia attenuates tissue damage and cytokine expression after traumatic brain injury by inhibiting necroptosis in the rat. Sci Rep 6:24547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xiong K, Liao H, Long L, Ding Y, Huang J, Yan J (2016) Necroptosis contributes to methamphetamine-induced cytotoxicity in rat cortical neurons. Toxicol In Vitro 35:163–168

    Article  CAS  PubMed  Google Scholar 

  32. Funakoshi T, Aki T, Tajiri M, Unuma K, Uemura K (2016) Necroptosis-like neuronal cell death caused by cellular cholesterol accumulation. J Biol Chem 291:25050–25065

    Article  CAS  PubMed  Google Scholar 

  33. Yang SH, Lee DK, Shin J, Lee S, Baek S, Kim J, Jung H, Hah JM, Kim Y (2016) Nec-1 alleviates cognitive impairment with reduction of Abeta and tau abnormalities in APP/PS1 mice. EMBO Mol Med. doi:10.15252/emmm.201606566

    Google Scholar 

  34. Liu F, Li X, Lu C, Bai A, Bielawski J, Bielawska A, Marshall B, Schoenlein PV, Lebedyeva IO, Liu K (2016) Ceramide activates lysosomal cathepsin B and cathepsin D to attenuate autophagy and induces ER stress to suppress myeloid-derived suppressor cells. Oncotarget. doi:10.18632/oncotarget.13438

    Google Scholar 

  35. Linkermann A, Green DR (2014) Necroptosis. N Engl J Med 370:455–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Galluzzi L, Kroemer G (2008) Necroptosis: a specialized pathway of programmed necrosis. Cell 135:1161–1163

    Article  CAS  PubMed  Google Scholar 

  37. Han W, Li L, Qiu S, Lu Q, Pan Q, Gu Y, Luo J, Hu X (2007) Shikonin circumvents cancer drug resistance by induction of a necroptotic death. Mol Cancer Ther 6:1641–1649

    Article  CAS  PubMed  Google Scholar 

  38. Mehta SL, Manhas N, Raghubir R (2007) Molecular targets in cerebral ischemia for developing novel therapeutics. Brain Res Rev 54:34–66

    Article  CAS  PubMed  Google Scholar 

  39. Galluzzi L, Bravo-San Pedro JM, Kepp O, Kroemer G (2016) Regulated cell death and adaptive stress responses. Cell Mol Life Sci 73:2405–2410

    Article  CAS  PubMed  Google Scholar 

  40. Newton K (2015) RIPK1 and RIPK3: critical regulators of inflammation and cell death. Trends Cell Biol 25:347–353

    Article  CAS  PubMed  Google Scholar 

  41. Yuan J, Najafov A, Py BF (2016) Roles of caspases in necrotic cell death. Cell 167:1693–1704

    Article  CAS  PubMed  Google Scholar 

  42. Thornton C, Hagberg H (2015) Role of mitochondria in apoptotic and necroptotic cell death in the developing brain. Clinica Chim Acta 451:35–38

    Article  CAS  Google Scholar 

  43. Dillon CP, Tummers B, Baran K, Green DR (2016) Developmental checkpoints guarded by regulated necrosis. Cell Mol Life Sci 73:2125–2136

    Article  CAS  PubMed  Google Scholar 

  44. Liu X, Shi F, Li Y, Yu X, Peng S, Li W, Luo X, Cao Y (2016) Post-translational modifications as key regulators of TNF-induced necroptosis. Cell Death Dis 7:e2293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Oberst A (2016) Death in the fast lane: what’s next for necroptosis? FEBS J 283:2616–2625

    Article  CAS  PubMed  Google Scholar 

  46. Vanden Berghe T, Kaiser WJ, Bertrand MJ, Vandenabeele P (2015) Molecular crosstalk between apoptosis, necroptosis, and survival signaling. Mol Cell Oncol 2:e975093

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zhao J, Jitkaew S, Cai Z, Choksi S, Li Q, Luo J, Liu ZG (2012) Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis. Proc Natl Acad Sci USA 109:5322–5327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang J, Yang Y, He W, Sun L (2016) Necrosome core machinery: MLKL. Cell Mol Life Sci 73:2153–2163

    Article  CAS  PubMed  Google Scholar 

  49. Meessen-Pinard M, Le Coupanec A, Desforges M, Talbot PJ (2017) Pivotal role of receptor-interacting protein kinase 1 and mixed lineage kinase domain-like in neuronal cell death induced by the human neuroinvasive coronavirus OC43. J Virol 91:e01513–e01516

    Article  Google Scholar 

  50. Ofengeim D, Yuan J (2013) Regulation of RIP1 kinase signalling at the crossroads of inflammation and cell death. Nat Rev Mol Cell Biol 14:727–736

    Article  CAS  PubMed  Google Scholar 

  51. Murphy JM, Czabotar PE, Hildebrand JM, Lucet IS, Zhang JG, Alvarez-Diaz S, Lewis R, Lalaoui N, Metcalf D, Webb AI, Young SN, Varghese LN, Tannahill GM, Hatchell EC, Majewski IJ, Okamoto T, Dobson RC, Hilton DJ, Babon JJ, Nicola NA, Strasser A, Silke J, Alexander WS (2013) The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism. Immunity 39:443–453

    Article  CAS  PubMed  Google Scholar 

  52. Mahoney DJ, Cheung HH, Mrad RL, Plenchette S, Simard C, Enwere E, Arora V, Mak TW, Lacasse EC, Waring J, Korneluk RG (2008) Both cIAP1 and cIAP2 regulate TNFalpha-mediated NF-kappaB activation. Proc Natl Acad Sci USA 105:11778–11783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wertz IE, Dixit VM (2008) Ubiquitin-mediated regulation of TNFR1 signaling. Cytokine Growth Factor Rev 19:313–324

    Article  CAS  PubMed  Google Scholar 

  54. Cho YS, Challa S, Moquin D, Genga R, Ray TD, Guildford M, Chan FK (2009) Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137:1112–1123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Han J, Zhong CQ, Zhang DW (2011) Programmed necrosis: backup to and competitor with apoptosis in the immune system. Nat Immunol 12:1143–1149

    Article  CAS  PubMed  Google Scholar 

  56. Li D, Xu T, Cao Y, Wang H, Li L, Chen S, Wang X, Shen Z (2015) A cytosolic heat shock protein 90 and cochaperone CDC37 complex is required for RIP3 activation during necroptosis. Proc Natl Acad Sci USA 112:5017–5022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Moore FR, Yang F, Press RD (2013) Detection of BCR-ABL1 kinase domain mutations causing imatinib resistance in chronic myelogenous leukemia. Methods Mol Biol 999:25–39

  58. Holler N, Zaru R, Micheau O, Thome M, Attinger A, Valitutti S, Bodmer JL, Schneider P, Seed B, Tschopp J (2000) Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol 1:489–495

    Article  CAS  PubMed  Google Scholar 

  59. Ricci MS, Zong WX (2006) Chemotherapeutic approaches for targeting cell death pathways. Oncologist 11:342–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zong WX, Thompson CB (2006) Necrotic death as a cell fate. Genes Dev 20:1–15

    Article  CAS  PubMed  Google Scholar 

  61. Vercammen D, Brouckaert G, Denecker G, Van de Craen M, Declercq W, Fiers W, Vandenabeele P (1998) Dual signaling of the Fas receptor: initiation of both apoptotic and necrotic cell death pathways. J Exp Med 188:919–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Matsumura H, Shimizu Y, Ohsawa Y, Kawahara A, Uchiyama Y, Nagata S (2000) Necrotic death pathway in Fas receptor signaling. J Cell Biol 151:1247–1256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nagley P, Higgins GC, Atkin JD, Beart PM (2010) Multifaceted deaths orchestrated by mitochondria in neurones. Biochim Biophys Acta 1802:167–185

    Article  CAS  PubMed  Google Scholar 

  64. Yerbury JJ, Ooi L, Dillin A, Saunders DN, Hatters DM, Beart PM, Cashman NR, Wilson MR, Ecroyd H (2016) Walking the tightrope: proteostasis and neurodegenerative disease. J Neurochem 137:489–505

    Article  CAS  PubMed  Google Scholar 

  65. Goodall ML, Fitzwalter BE, Zahedi S, Wu M, Rodriguez D, Mulcahy-Levy JM, Green DR, Morgan M, Cramer SD, Thorburn A (2016) The autophagy machinery controls cell death switching between apoptosis and necroptosis. Dev Cell 37:337–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Johansen T, Lamark T (2011) Selective autophagy mediated by autophagic adapter proteins. Autophagy 7:279–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Viiri J, Amadio M, Marchesi N, Hyttinen JM, Kivinen N, Sironen R, Rilla K, Akhtar S, Provenzani A, D’Agostino VG, Govoni S, Pascale A, Agostini H, Petrovski G, Salminen A, Kaarniranta K (2013) Autophagy activation clears ELAVL1/HuR-mediated accumulation of SQSTM1/p62 during proteasomal inhibition in human retinal pigment epithelial cells. PloS one 8:e69563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hong JM, Kim SJ, Lee SM (2016) Role of necroptosis in autophagy signaling during hepatic ischemia and reperfusion. Toxicol Appl Pharmacol 308:1–10

    Article  CAS  PubMed  Google Scholar 

  69. Button RW, Vincent JH, Strang CJ, Luo S (2016) Dual PI-3 kinase/mTOR inhibition impairs autophagy flux and induces cell death independent of apoptosis and necroptosis. Oncotarget 7:5157–5175

    Article  PubMed  PubMed Central  Google Scholar 

  70. Kharaziha P, Chioureas D, Baltatzis G, Fonseca P, Rodriguez P, Gogvadze V, Lennartsson L, Bjorklund AC, Zhivotovsky B, Grander D, Egevad L, Nilsson S, Panaretakis T (2015) Sorafenib-induced defective autophagy promotes cell death by necroptosis. Oncotarget 6:37066–37082

    Article  PubMed  PubMed Central  Google Scholar 

  71. Luedde T, Kaplowitz N, Schwabe RF (2014) Cell death and cell death responses in liver disease: mechanisms and clinical relevance. Gastroenterology 147(765–783):e764

    Google Scholar 

  72. Steinwascher S, Nugues AL, Schoeneberger H, Fulda S (2015) Identification of a novel synergistic induction of cell death by Smac mimetic and HDAC inhibitors in acute myeloid leukemia cells. Cancer Lett 366:32–43

    Article  CAS  PubMed  Google Scholar 

  73. Takano J, Tomioka M, Tsubuki S, Higuchi M, Iwata N, Itohara S, Maki M, Saido TC (2005) Calpain mediates excitotoxic DNA fragmentation via mitochondrial pathways in adult brains: evidence from calpastatin mutant mice. J Biol Chem 280:16175–16184

    Article  CAS  PubMed  Google Scholar 

  74. Rohde K, Kleinesudeik L, Roesler S, Lowe O, Heidler J, Schroder K, Wittig I, Drose S, Fulda S (2017) A Bak-dependent mitochondrial amplification step contributes to Smac mimetic/glucocorticoid-induced necroptosis. Cell Death Differ 24:83–97

    Article  CAS  PubMed  Google Scholar 

  75. Rohde K, Kleinesudeik L, Roesler S, Lowe O, Heidler J, Schroder K, Wittig I, Drose S, Fulda S (2016) A Bak-dependent mitochondrial amplification step contributes to Smac mimetic/glucocorticoid-induced necroptosis. Cell Death Differ. doi:10.1038/cdd.2016.102

    PubMed  Google Scholar 

  76. Liu Q, Qiu J, Liang M, Golinski J, van Leyen K, Jung JE, You Z, Lo EH, Degterev A, Whalen MJ (2014) Akt and mTOR mediate programmed necrosis in neurons. Cell Death Dis 5:e1084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wang Z, Jiang H, Chen S, Du F, Wang X (2012) The mitochondrial phosphatase PGAM5 functions at the convergence point of multiple necrotic death pathways. Cell 148:228–243

    Article  CAS  PubMed  Google Scholar 

  78. Lu W, Sun J, Yoon JS, Zhang Y, Zheng L, Murphy E, Mattson MP, Lenardo MJ (2016) Mitochondrial protein PGAM5 regulates mitophagic protection against cell necroptosis. PloS ONE 11:e0147792

    Article  PubMed  PubMed Central  Google Scholar 

  79. Zou X, Zhang M, Sun Y, Zhao S, Wei Y, Zhang X, Jiang C, Liu H (2015) Inhibitory effects of 3-bromopyruvate in human nasopharyngeal carcinoma cells. Oncol Rep 34:1895–1904

    CAS  PubMed  Google Scholar 

  80. Jantas D, Greda A, Golda S, Korostynski M, Grygier B, Roman A, Pilc A, Lason W (2014) Neuroprotective effects of metabotropic glutamate receptor group II and III activators against MPP(+)-induced cell death in human neuroblastoma SH-SY5Y cells: the impact of cell differentiation state. Neuropharmacology 83:36–53

    Article  CAS  PubMed  Google Scholar 

  81. Petkovic F, Campbell IL, Gonzalez B, Castellano B (2016) Astrocyte-targeted production of interleukin-6 reduces astroglial and microglial activation in the cuprizone demyelination model: implications for myelin clearance and oligodendrocyte maturation. Glia 64:2104–2119

    Article  PubMed  Google Scholar 

  82. Leibowitz SM, Yan J (2016) NF-kappaB pathways in the pathogenesis of multiple sclerosis and the therapeutic implications. Front Molar Neurosci 9:84

    Google Scholar 

  83. Xie X, Zhao Y, Ma CY, Xu XM, Zhang YQ, Wang CG, Jin J, Shen X, Gao JL, Li N, Sun ZJ, Dong DL (2015) Dimethyl fumarate induces necroptosis in colon cancer cells through GSH depletion/ROS increase/MAPKs activation pathway. Br J Pharmacol 172:3929–3943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wang Q, Chuikov S, Taitano S, Wu Q, Rastogi A, Tuck SJ, Corey JM, Lundy SK, Mao-Draayer Y (2015) Dimethyl fumarate protects neural stem/progenitor cells and neurons from oxidative damage through Nrf2-ERK1/2 MAPK pathway. Int J Mol Sci 16:13885–13907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Pan Z, Niu Y, Liang Y, Zhang X, Dong M (2016) beta-Ecdysterone protects SH-SY5Y cells against 6-Hydroxydopamine-induced apoptosis via mitochondria-dependent mechanism: involvement of p38(MAPK)-p53 signaling pathway. Neurotox Res 30:453–466

    Article  CAS  PubMed  Google Scholar 

  86. Re DB, Le Verche V, Yu C, Amoroso MW, Politi KA, Phani S, Ikiz B, Hoffmann L, Koolen M, Nagata T, Papadimitriou D, Nagy P, Mitsumoto H, Kariya S, Wichterle H, Henderson CE, Przedborski S (2014) Necroptosis drives motor neuron death in models of both sporadic and familial ALS. Neuron 81:1001–1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bury JJ, Highley JR, Cooper-Knock J, Goodall EF, Higginbottom A, McDermott CJ, Ince PG, Shaw PJ, Kirby J (2016) Oligogenic inheritance of optineurin (OPTN) and C9ORF72 mutations in ALS highlights localisation of OPTN in the TDP-43-negative inclusions of C9ORF72-ALS. Neuropathology 36:125–134

    Article  CAS  PubMed  Google Scholar 

  88. Pirooznia SK, Dawson VL, Dawson TM (2014) Motor neuron death in ALS: programmed by astrocytes? Neuron 81:961–963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhang QL, Niu Q, Ji XL, Conti P, Boscolo P (2008) Is necroptosis a death pathway in aluminum-induced neuroblastoma cell demise? Int J Immunopathol Pharmacol 21:787–796

    Article  CAS  PubMed  Google Scholar 

  90. Degterev A, Hitomi J, Germscheid M, Ch’en IL, Korkina O, Teng X, Abbott D, Cuny GD, Yuan C, Wagner G, Hedrick SM, Gerber SA, Lugovskoy A, Yuan J (2008) Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol 4:313–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhu X, Park J, Golinski J, Qiu J, Khuman J, Lee CC, Lo EH, Degterev A, Whalen MJ (2014) Role of Akt and mammalian target of rapamycin in functional outcome after concussive brain injury in mice. J Cereb Blood Flow Metab 34:1531–1539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zhang M, Li J, Geng R, Ge W, Zhou Y, Zhang C, Cheng Y, Geng D (2013) The inhibition of ERK activation mediates the protection of necrostatin-1 on glutamate toxicity in HT-22 cells. Neurotox Res 24:64–70

    Article  CAS  PubMed  Google Scholar 

  93. Vandenabeele P, Grootjans S, Callewaert N, Takahashi N (2013) Necrostatin-1 blocks both RIPK1 and IDO: consequences for the study of cell death in experimental disease models. Cell Death Differ 20:185–187

    Article  CAS  PubMed  Google Scholar 

  94. Li XT, Tang W, Jiang Y, Wang XM, Wang YH, Cheng L, Meng XS (2016) Multifunctional targeting vinorelbine plus tetrandrine liposomes for treating brain glioma along with eliminating glioma stem cells. Oncotarget 7:24604–24622

    Article  PubMed  PubMed Central  Google Scholar 

  95. Noguchi N, Saito Y, Urano Y (2014) Diverse functions of 24(S)-hydroxycholesterol in the brain. Biochem Biophys Res Commun 446:692–696

    Article  CAS  PubMed  Google Scholar 

  96. Noguchi N, Urano Y, Takabe W, Saito Y (2015) New aspects of 24(S)-hydroxycholesterol in modulating neuronal cell death. Free Radic Biol Med 87:366–372

    Article  CAS  PubMed  Google Scholar 

  97. Sharma S, Taliyan R (2015) Transcriptional dysregulation in Huntington’s disease: the role of histone deacetylases. Pharmacol Res 100:157–169

    Article  CAS  PubMed  Google Scholar 

  98. Sharma S, Taliyan R (2015) Targeting histone deacetylases: a novel approach in Parkinson’s disease. Parkinson’s Dis 2015:303294

    Google Scholar 

  99. Wang D, Zhao M, Chen G, Cheng X, Han X, Lin S, Zhang X, Yu X (2013) The histone deacetylase inhibitor vorinostat prevents TNFalpha-induced necroptosis by regulating multiple signaling pathways. Apoptosis 18:1348–1362

    Article  CAS  PubMed  Google Scholar 

  100. Bhat J, Sosna J, Fritsch J, Quabius ES, Schutze S, Zeissig S, Ammerpohl O, Adam D, Kabelitz D (2016) Expression of non-secreted IL-4 is associated with HDAC inhibitor-induced cell death, histone acetylation and c-Jun regulation in human gamma/delta T-cells. Oncotarget. doi:10.18632/oncotarget.11462

    Google Scholar 

  101. Bollino D, Balan I, Aurelian L (2015) Valproic acid induces neuronal cell death through a novel calpain-dependent necroptosis pathway. J Neurochem 133:174–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81371335).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yilu Gao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Lifei Shao and Shuping Yu have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, L., Yu, S., Ji, W. et al. The Contribution of Necroptosis in Neurodegenerative Diseases. Neurochem Res 42, 2117–2126 (2017). https://doi.org/10.1007/s11064-017-2249-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-017-2249-1

Keywords

Navigation