Skip to main content
Log in

Prenatal Stress Impairs Spatial Learning and Memory Associated with Lower mRNA Level of the CAMKII and CREB in the Adult Female Rat Hippocampus

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Prenatal stress (PS) results in various behavioral and emotional alterations observed in later life. In particular, PS impairs spatial learning and memory processes but the underlying mechanism involved in this pathogenesis still remains unknown. Here, we reported that PS lowered the body weight in offspring rats, particularly in female rats, and impaired spatial learning and memory of female offspring rats in the Morris water maze. Correspondingly, the decreased CaMKII and CREB mRNA in the hippocampus were detected in prenatally stressed female offspring, which partially explained the effect of PS on the spatial learning and memory. Our findings suggested that CaMKII and CREB may be involved in spatial learning and memory processes in the prenatally stressed adult female offspring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fine R, Zhang J, Stevens HE (2014) Prenatal stress and inhibitory neuron systems: implications for neuropsychiatric disorders. Mol Psychiatry 19:641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Benoit JD, Rakic P, Frick KM (2015) Prenatal stress induces spatial memory deficits and epigenetic changes in the hippocampus indicative of heterochromatin formation and reduced gene expression. Behav Brain Res 281:1–8

    Article  CAS  PubMed  Google Scholar 

  3. Liu D, Wang Z, Gao Z, Xie K, Zhang Q, Jiang H, Pang Q (2014) Effects of curcumin on learning and memory deficits, BDNF, and ERK protein expression in rats exposed to chronic unpredictable stress. Behav Brain Res 271:116–121

    Article  CAS  PubMed  Google Scholar 

  4. Yan W, Ma Y, Hu J, Zhang X, Cheng W, Han J, Min L, Ren J, Zhang X, Liu M (2016) Sex-specific effects of prenatal chronic mild stress on adult spatial learning capacity and regional glutamate receptor expression profiles. Exp Neurol 281:66–80

    Article  Google Scholar 

  5. Lisman J, Raghavachari S (2015) Biochemical principles underlying the stable maintenance of LTP by the CaMKII/NMDAR complex. Brain Res 1621:51–61

    Article  CAS  PubMed  Google Scholar 

  6. Wang B, Zhao J, Yu M, Meng X, Cui X, Zhao Y, Zhu Y, Xing W, Guan Y (2014) Disturbance of intracellular calcium homeostasis and CaMKII/CREB signaling is associated with learning and memory impairments induced by chronic aluminum exposure. Neurotox Res 26:52–63

    Article  CAS  PubMed  Google Scholar 

  7. Sun C-Y, Qi S-S, Lou X-F, Sun S-H, Wang X, Dai K-Y, Hu S-W, Liu N-B (2006) Changes of learning, memory and levels of CaMKII, CaM mRNA, CREB mRNA in the hippocampus of chronic multiple-stressed rats. Chin Med J 119:140–147

    CAS  PubMed  Google Scholar 

  8. Chen DY, Bambah-Mukku D, Pollonini G, Alberini CM (2012) Glucocorticoid receptors recruit the CaMKIIalpha-BDNF-CREB pathways to mediate memory consolidation. Nat Neurosci 15:1707–1714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. D’Hooge R, De Deyn PP (2001) Applications of the Morris water maze in the study of learning and memory. Brain Res Rev 36:60–90

    Article  PubMed  Google Scholar 

  10. Modir F, Elahdadi Salmani M, Goudarzi I, Lashkarboluki T, Abrari K (2014) Prenatal stress decreases spatial learning and memory retrieval of the adult male offspring of rats. Physiol Behav 129:104–109

    Article  CAS  PubMed  Google Scholar 

  11. Yaka R, Salomon S, Matzner H, Weinstock M (2007) Effect of varied gestational stress on acquisition of spatial memory, hippocampal LTP and synaptic proteins in juvenile male rats. Behav Brain Res 179:126–132

    Article  CAS  PubMed  Google Scholar 

  12. Shapiro ML, Riceberg JS, Seip-Cammack K, Guise KG (2014) Functional Interactions of Prefrontal Cortex and the Hippocampus in Learning and Memory. Space, Time and Memory in the Hippocampal Formation, Springer Vienna, pp 517–560

    Book  Google Scholar 

  13. Koehl M, Darnaudéry M, Dulluc J, Van Reeth O, Moal ML, Maccari S (1999) Prenatal stress alters circadian activity of hypothalamo–pituitary–adrenal axis and hippocampal corticosteroid receptors in adult rats of both gender. J Neurobiol 40:302–315

    Article  CAS  PubMed  Google Scholar 

  14. Rajeevan MS, Ranamukhaarachchi DG, Vernon SD, Unger ER (2001) Use of real-time quantitative PCR to validate the results of cDNA array and differential display PCR technologies. Methods 25:443–451

    Article  CAS  PubMed  Google Scholar 

  15. Dong S, Li C, Wu P, Tsien JZ, Hu Y (2007) Environment enrichment rescues the neurodegenerative phenotypes in presenilins-deficient mice. Eur J Neurosci 26:101–112

    Article  PubMed  Google Scholar 

  16. Lesage J, Del-Favero F, Leonhardt M, Louvart H, Maccari S, Vieau D, Darnaudery M (2004) Prenatal stress induces intrauterine growth restriction and programmes glucose intolerance and feeding behaviour disturbances in the aged rat. J Endocrinol 181:291–296

    Article  CAS  PubMed  Google Scholar 

  17. Griffin WC, Skinner HD, Salm AK, Birkle DL (2003) Mild prenatal stress in rats is associated with enhanced conditioned fear. Physiol Behav 79:209–215

    Article  CAS  PubMed  Google Scholar 

  18. Williams MT, Hennessy MB, Davis HN (1998) Stress during pregnancy alters rat offspring morphology and ultrasonic vocalizations—a psychobiological perspective. Physiol Behav 63:337–343

    Article  CAS  PubMed  Google Scholar 

  19. Bussières E-L, Tarabulsy GM, Pearson J, Tessier R, Forest J-C, Giguère Y (2015) Maternal prenatal stress and infant birth weight and gestational age: a meta-analysis of prospective studies. Dev Rev 36:179–199

    Article  Google Scholar 

  20. Iwasa T, Matsuzaki T, Munkhzaya M, Tungalagsuvd A, Kawami T, Murakami M, Yamasaki M, Kato T, Kuwahara A, Yasui T, Irahara M (2014) Prenatal exposure to glucocorticoids affects body weight, serum leptin levels, and hypothalamic neuropeptide-Y expression in pre-pubertal female rat offspring. Int J Dev Neurosci 36:1–4

    Article  CAS  PubMed  Google Scholar 

  21. Wu J, Song T-B, Li Y-J, He K-S, Ge L, Wang L-R (2007) Prenatal restraint stress impairs learning and memory and hippocampal PKCbeta1 expression and translocation in offspring rats. Brain Res 1141:205–213

    Article  CAS  PubMed  Google Scholar 

  22. Salomon S, Bejar C, Schorer-Apelbaum D, Weinstock M (2011) Corticosterone Mediates Some but Not Other Behavioural Changes Induced by Prenatal Stress in Rats. J Neuroendocrinol 23:118–128

    Article  CAS  PubMed  Google Scholar 

  23. Szuran TF, Pliška V, Pokorny J, Welzl H (2000) Prenatal stress in rats: effects on plasma corticosterone, hippocampal glucocorticoid receptors, and maze performance. Physiol Behav 71:353–362

    Article  CAS  PubMed  Google Scholar 

  24. Sierksma AS, Prickaerts J, Chouliaras L, Rostamian S, Delbroek L, Rutten BP, Steinbusch HW, Dl VDH (2013) Behavioral and neurobiological effects of prenatal stress exposure in male and female APPswe/PS1dE9 mice. Neurobiol Aging 34:319–337

    Article  CAS  PubMed  Google Scholar 

  25. de los Angeles GAM, del Carmen ROM, Wendy PM, Socorro R-M (2016) Tactile Stimulation Effects on Hippocampal Neurogenesis and Spatial Learning and Memory in Prenatally Stressed Rats. Brain Res Bull. doi:10.1016/j.brainresbull.2016.03.003

  26. Jia N, Yang K, Sun Q, Cai Q, Li H, Cheng D, Fan X, Zhu Z (2010) Prenatal stress causes dendritic atrophy of pyramidal neurons in hippocampal CA3 region by glutamate in offspring rats. Dev Neurobiol 70:114–125

    CAS  PubMed  Google Scholar 

  27. Sun H, Jia N, Guan L, Su Q, Wang D, Li H, Zhu Z (2013) Involvement of NR1, NR2A different expression in brain regions in anxiety-like behavior of prenatally stressed offspring. Behav Brain Res 257:1–7

    Article  CAS  PubMed  Google Scholar 

  28. Rutten K, Prickaerts J, Blokland A (2006) Rolipram reverses scopolamine-induced and time-dependent memory deficits in object recognition by different mechanisms of action. Neurobiol Learn Mem 85:132–138

    Article  CAS  PubMed  Google Scholar 

  29. Barria A, Malinow R (2005) NMDA receptor subunit composition controls synaptic plasticity by regulating binding to CaMKII. Neuron 48:289–301

    Article  CAS  PubMed  Google Scholar 

  30. Sanhueza M, Fernandez-Villalobos G, Stein IS, Kasumova G, Zhang P, Bayer KU, Otmakhov N, Hell JW, Lisman J (2011) Role of the CaMKII/NMDA receptor complex in the maintenance of synaptic strength. J Neurosci 31:9170–9178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bayer K-U, De Koninck P, Leonard AS, Hell JW, Schulman H (2001) Interaction with the NMDA receptor locks CaMKII in an active conformation. Nature 411:801–805

    Article  CAS  PubMed  Google Scholar 

  32. Guan L, Jia N, Zhao X, Zhang X, Tang G, Yang L, Sun H, Wang D, Su Q, Song Q, Cai D, Cai Q, Li H, Zhu Z (2013) The involvement of ERK/CREB/Bcl-2 in depression-like behavior in prenatally stressed offspring rats. Brain Res Bull 99:1–8

    Article  CAS  PubMed  Google Scholar 

  33. Zhu Z, Sun H, Gong X, Li H (2016) Different effects of prenatal stress on ERK2/CREB/Bcl-2 expression in the hippocampus and the prefrontal cortex of adult offspring rats. Neuroreport 27

  34. Shi Z, Lu C, Sun X, Wang Q, Chen S, Li Y, Qu L, Chen L, Bu L, Liao D (2015) Tong Luo Jiu Nao ameliorates Aβ 1–40-induced cognitive impairment on adaptive behavior learning by modulating ERK/CaMKII/CREB signaling in the hippocampus. BMC Complement Altern Med 15:1

    Article  Google Scholar 

  35. Grønli J, Bramham C, Murison R, Kanhema T, Fiske E, Bjorvatn B, Ursin R, Portas CM (2006) Chronic mild stress inhibits BDNF protein expression and CREB activation in the dentate gyrus but not in the hippocampus proper. Pharmacol Biochem Behav 85:842–849

    Article  PubMed  Google Scholar 

  36. Gerges NZ, Aleisa AM, Schwarz LA, Alkadhi KA (2004) Reduced basal CAMKII levels in hippocampal CA1 region: Possible cause of stress-induced impairment of LTP in chronically stressed rats. Hippocampus 14:402–410

    Article  CAS  PubMed  Google Scholar 

  37. Li X, Sun H, Zhu Z, Li H (2014) The reduction of nNOS and ROS associated with decreased Ca2 + in hippocampus of prenatally stressed female offspring. Neurochem J 8:282–288

    Article  Google Scholar 

  38. Shifman JM, Choi MH, Mihalas S, Mayo SL, Kennedy MB (2006) Ca2+/calmodulin-dependent protein kinase II (CaMKII) is activated by calmodulin with two bound calciums. Proc Natl Acad Sci 103:13968–13973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the Hospital-level Grant of Affiliated Children’s Hospital of Xi’an Jiaotong University (No. 2015C02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Wu, H., Liu, J. et al. Prenatal Stress Impairs Spatial Learning and Memory Associated with Lower mRNA Level of the CAMKII and CREB in the Adult Female Rat Hippocampus. Neurochem Res 42, 1496–1503 (2017). https://doi.org/10.1007/s11064-017-2206-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-017-2206-z

Keywords

Navigation