Skip to main content
Log in

Delineation of the Role of Astroglial GABA Transporters in Seizure Control

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

An Author Correction to this article was published on 17 October 2017

This article has been updated

Abstract

Studies of GABA transport in neurons and astrocytes have provided evidence that termination of GABA as neurotransmitter is brought about primarily by active transport into the presynaptic, GABAergic nerve endings. There is, however, a considerable transport capacity in the astrocytes surrounding the synaptic terminals, a transport which may limit the availability of transmitter GABA leading to a higher probability of seizure activity governed by the balance of excitatory and inhibitory neurotransmission. Based on this it was hypothesized that selective inhibition of astrocytic GABA transport might prevent such seizure activity. A series of GABA analogs of restricted conformation were synthesized and in a number of collaborative investigations between Prof. Steve White at the University of Utah and medicinal chemists and pharmacologists at the School of Pharmacy and the University of Copenhagen, Denmark, GABA analogs with exactly this pharmacological property were identified. The most important analogs identified were N-methyl-exo-THPO (N-methyl-3-hydroxy-4-amino-4,5,6,7-tetrahydro-1,2-benzisoxazole) and its lipophilic analog EF-1502 ((RS)-4-[N-[1,1-bis(3-methyl-2-thienyl)but-1-en-4-yl]-N-methylamino]-4,5,6,7-tetrahydrobenzo[d]isoxazol-3-ol) both of which turned out to be potent anticonvulsants in animal models of epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Change history

  • 17 October 2017

    The original version of this article unfortunately contained a mistake. In Fig. 1 two chemical structures are incorrect, namely exo-THPO and N-methyl-exo-THPO. The hydroxyl group (–OH) in the isoxazole ring is missing. The corrected Fig. 1 is given below.

References

  1. Elliott KA, van Gelder NM (1958) Occlusion and metabolism of gamma-aminobutyric acid by brain tissue. J Neurochem 3:28–40

    Article  CAS  PubMed  Google Scholar 

  2. Iversen LL, Neal MJ (1968) The uptake of [3H]GABA by slices of rat cerebral cortex. J Neurochem 15:1141–1149

    Article  CAS  PubMed  Google Scholar 

  3. Krnjevic K, Schwartz S (1967) The action of gamma-aminobutyric acid on cortical neurons. Exp Brain Res 3:320–336

    Article  CAS  PubMed  Google Scholar 

  4. Roberts E (1971) The GABA system in brain development. In: Paoletti R, Davison AN (eds) Chemistry and brain development. Plenum Press, New York, pp 207–214

    Chapter  Google Scholar 

  5. Curtis DA, Johnston GA (1974) Amino acid transmitters in the mammalian central nervous system. Ergeb Physiol 69:97–188

    CAS  PubMed  Google Scholar 

  6. Hösli E, Hösli L (1976) Autoradiographic studies on the uptake of [3H]noradrenaline and [3H]GABA in cultured rat cerebellum. Exp Brain Res 26:319–324

    Article  PubMed  Google Scholar 

  7. Hösli E, Hösli L (1978) Autoradiographic localization of the uptake of [3H]GABA and L-[3H]glutamic acid in neurons and glial cells of cultured dorsal root ganglia. Neurosci Lett 7:173–176

    Article  PubMed  Google Scholar 

  8. Schousboe A (1981) Transport and metabolism of glutamate and GABA in neurons and glial cells. Int Rev Neurobiol 22:1–45

    Article  CAS  PubMed  Google Scholar 

  9. Schousboe A (2000) Pharmacological and functional characterization of astrocytic GABA transport: a short review. Neurochem Res 25:11244–12412

    Article  Google Scholar 

  10. Schousboe A (2003) Role of astrocytes in the maintenance and modulation of glutamatergic and GABAergic neurotransmission. Neurochem Res 28:347–352

    Article  CAS  PubMed  Google Scholar 

  11. Hertz L, Schousboe A (1987) Primary cultures of GABAergic and glutamatergic neurons as model systems to study neurotransmitter function. I. Differentiated cells. In: Vernadakis A, Privat A, Lauder JM, Timiras PS, Giacobini E (eds) Model systems of development and aging of the nervous system. Springer, Boston MA, pp. 19–31

    Chapter  Google Scholar 

  12. Schousboe A, Larsson OM, Wood JD, Krogsgaard-Larsen P (1983) Transport and metabolism of y-aminobutyric acid in neurons and glia: implications for epilepsy. Epilepsia 24:531–538

    Article  CAS  PubMed  Google Scholar 

  13. White HS, Sarup A, Bolvig T, Kristensen AS, Petersen G, Nelson N, Pickering DS, Larsson OM, Frølund B, Krogsgaard-Larsen P, Schousboe A (2002) Correlation between anticonvulsant activity and inhibitory action on glial γ-aminobutyric acid uptake of the highly selective mouse γ-aminobutyric acid transporter 1 inhibitor 3-hydroxy-4-amino-4,5,6,7-tetrahydro-1,2-benzisoxazole and its N-alkylated analogs. J Pharmacol Exp Ther 202:636–647

    Article  Google Scholar 

  14. Schousboe A, Madsen KK, Barker-Haliski M, White HS (2014) The GABA synapse as a target for antiepileptic drugs: a historical overview focused on GABA transporters. Neurochem Res 39:1980–1987

    Article  CAS  PubMed  Google Scholar 

  15. Schousboe A, Larsson OM, Hertz L, Krogsgaard-Larsen P (1981) Heterocyclic GABA analogues as new selective inhibitors of astroglial GABA transport. Drug Devl Res 1:115–127

    Article  CAS  Google Scholar 

  16. Falck E, Perregaard J, Frølund B, Søkilde B, Buur A, Hansen L, Frydenvang K, Brehm L, Bolvig T, Larsson OM, Sanchez C, White HS, Schousboe A, Krogsgaard-Larsen P (1999) Selective inhibitors of glial GABA uptake: synthesis, absolute stereochemistry, and pharmacology of the enantiomers of 3-hydroxy-4-amino-4,5,6,7-1,2-benzisoxazole (exo-THPO) and analogues. J Med Chem 42:5402–5414

    Article  Google Scholar 

  17. Wood JD, Johnson DD, Krogsgaard-Larsen P, Schousboe A (1983) Anticonvulsant activity of the glia-selective GABA uptake inhibitor, THPO. Neuropharmacol 22:139–142

    Article  CAS  Google Scholar 

  18. Gonsalves SF, Twitchell B, Harbaugh RE, Krogsgaard-Larsen P (1989) Anticonvulsant activity of intracerebroventricularly administered glial GABA uptake inhibitors and other GABA mimetics in chemical seizure models. Epilepsy Res 4:34–41

    Article  CAS  PubMed  Google Scholar 

  19. Gonsalves SF, Twitchell B, Harbaugh RE, Krogsgaard-Larsen P (1989) Anticonvulsant activity of the glial GABA uptake inhibitor, THAO, in chemical seizures. Eur J Pharmacol 168:265–268

    Article  CAS  PubMed  Google Scholar 

  20. Schousboe A, Hjeds H, Engler J, Krogsgaard-Larsen P, Wood JD (1986) Tissue distribution, metabolism, anticonvulsant efficacy, and effect on brain amino acid levels of the glia-selective γ-aminobutyric acid transport inhibitor 4,5,6,7-tetrahydroisoxazolo[4.5-c]pyridine-3-ol in mice and chicks. J Neurochem 47:758–763

    Article  CAS  PubMed  Google Scholar 

  21. Falch E, Larsson OM, Schousboe A, Krogsgaard-Larsen P (1990) GABA-A agonists and GABA uptake inhibitors: Structure-activity relationships. Drug Devel Res 21:169–188

    Article  CAS  Google Scholar 

  22. Yunger LM, Fowler PJ, Zarevics P, Settler PE (1984) Novel inhibitors of gamma aminobutyric acid (GABA) uptake: anticonvulsant actions in rats and mice. J Pharmacol Exp Ther 288:109–115

    Google Scholar 

  23. White HS, Hunt J, Wolf HH, Swinyard E, Falck E, Krogsgaard-Larsen P, Schousboe A (1993) Anticonvulsant activity of the γ-aminobutyric acid uptake inhibitor N-4,4-diphenyl-3-butenyl-4,5,6,7-tetrahydroisoxazolo[4,5-c]pyridine-3-ol. Eur J Pharmacol 236:147–149

    Article  CAS  PubMed  Google Scholar 

  24. Clausen RP, Moltzen E, Perregaard J, Lenz SM, Sanchez C, Falck E, Frølund B, Bolvig T, Sarup A, Larsson OM, Schousboe A, Krogsgaard-Larsen (2005) Selective inhibitors of GABA uptake: synthesis and molecular pharmacology of 4-N-methylamino-4,5,6,7-tetrahydrobenzo[d]isoxazol-3-ol analogues. Bioorg Med Chem 13:895–908

    Article  CAS  PubMed  Google Scholar 

  25. White HS, Watson WP, Hansen SL, Slough S, Perregaard J Sarup A, Bolvig T, Petersen G, Larsson OM, Clausen RP, Frølund B, Falck E, Krogsgaard-Larsen P, Schousboe A (2005) First demonstration of a functional role for central nervous system betaine/γ-aminobutyric acid transporter (mGAT2) based on synergistic anticonvulsant action among inhibitors of mGAT1 and mGAT2. J Pharmacol Exp Ther 312:866–874

    Article  CAS  PubMed  Google Scholar 

  26. Bræstrup C, Nielsen EB, Sonnewald U, Knutsen LJ, Andersen KE, Jansen JA, Frederiksen K, Andersen PH, Suzdak PD (1990) (R)-N-[4,4-bis(3-methyl-2-thienyl)but-3-en-1-yl]nipecotic acid binds with high affinity to the brain gamma-aminobutyric acid uptake carrier. J Neurochem 54:639–647

    Article  PubMed  Google Scholar 

  27. Schousboe A, Madsen KK, White SH (2011) Neurotransmitter transporters and anticonvulsant drug development. Neuromethods 56:431–446

    Article  CAS  Google Scholar 

  28. Madsen KK, Clausen RP, Larsson OM, Krogsgaard-Larsen P, Schousboe A, White HS (2009) Synaptic and extrasynaptic GABA transporters as targets for anti-epileptic drugs. J Neurochem 109(Suppl 1):139–144

    Article  CAS  PubMed  Google Scholar 

  29. Lehre AC, Rowley NM, Zhou Y, Holmseth S, Guo C, Holen T, Hua R, Laake P, Olofsson AM, Poblete-Naredo I, Rusakov DA, Madsen KK, Clausen RP, Schousboe A, White HS, Danbolt NC (2011) Deletion of the betaine-GABA transporter (BGT1; slc6a12) gene does not affect seizure thresholds of adult mice. Epilepsy Res 95:70–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lie MEK, Al-Khawaja A, Damgaard M, Haugaard AS, Schousboe A, Clarkson AN, Wellendorph P (2016) Glial GABA transporters as modulators of inhibitory signaling in epilepsy and stroke. Adv Neurobiol (in press)

  31. Eulenburg V, Gomeza J (2010) Neurotransmitter transporters expressed in glial cells as regulators of synapse function. Brain Res Rev 63:103–112

    Article  CAS  PubMed  Google Scholar 

  32. Krogsgaard-Larsen P, Frølund B, Liljefors T (2006) GABA(A) agonists and partial agonists: THIP (Gaboxadol) as a non-opiod analgesic and a novel type of hypnotic. Adv Pharmacol 54:53–71

    Article  CAS  PubMed  Google Scholar 

  33. Stórustovu SI, Ebert B (2006) Pharmacological characterization of agonists at δ-containing GABAA receptors: Functional selectivity of receptors is dependent on the absence of y2. J Pharmacol Exp Ther 316:1351–1359

    Article  PubMed  Google Scholar 

  34. Madsen KK, Ebert B, Clausen RP, Krogsgaard-Larsen P, Schousboe A, White HS (2011) Selective GABA transporter inhibitors tiagabine and EF1502 exhibit mechanistic differences in their ability to modulate the ataxia and anticonvulsant action of the extrasynaptic GABA(A) receptor agonist gaboxadol. J Pharmacol Exp Ther 338:214–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arne Schousboe.

Additional information

A correction to this article is available online at https://doi.org/10.1007/s11064-017-2416-4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schousboe, A., Madsen, K.K. Delineation of the Role of Astroglial GABA Transporters in Seizure Control. Neurochem Res 42, 2019–2023 (2017). https://doi.org/10.1007/s11064-017-2188-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-017-2188-x

Keywords

Navigation