Skip to main content

Advertisement

Log in

Myelin Basic Protein Citrullination in Multiple Sclerosis: A Potential Therapeutic Target for the Pathology

  • Overview
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Multiple sclerosis (MS) is a multifactorial demyelinating disease characterized by neurodegenerative events and autoimmune response against myelin component. Citrullination or deimination, a post-translational modification of protein-bound arginine into citrulline, catalyzed by Ca2+ dependent peptidylarginine deiminase enzyme (PAD), plays an essential role in physiological processes include gene expression regulation, apoptosis and the plasticity of the central nervous system, while aberrant citrullination can generate new epitopes, thus involving in the initiation and/or progression of autoimmune disorder like MS. Myelin basic protein (MBP) is the major myelin protein and is generally considered to maintain the stability of the myelin sheath. This review describes the MBP citrullination and its consequence, as well as offering further support for the “inside-out” hypothesis that MS is primarily a neurodegenerative disease with secondary inflammatory demyelination. In addition, it discusses the role of MBP citrullination in the immune inflammation and explores the potential of inhibition of PAD enzymes as a therapeutic strategy for the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

Anti-CCP:

Anticyclic citrullinated peptide

BBB:

Blood–brain barrier

CNS:

Central nervous system

EAE:

Experimental autoimmune encephalomyelitis

HLA:

Human leukocyte antigen

MBP:

Myelin basic protein

MHC:

Major histocompatibility complex

MMP:

Matrix metalloproteinase

MOG:

Myelin oligodendrocyte glycoprotein

MS:

Multiple sclerosis

NAWM:

Normal appearing white matter

PADs:

Peptidylarginine deiminases

PBMCs:

Peripheral blood mononuclear cells

PLP:

Proteolipid protein

PTMs:

Posttranslational modifications

RA:

Reheumatoid arthritis

TCR:

T cell receptor

References

  1. Stadelmann C (2011) Multiple sclerosis as a neurodegenerative disease: pathology, mechanisms and therapeutic implications. Curr Opin Neurol 24:224–229

    Article  CAS  PubMed  Google Scholar 

  2. Mahad DH, Trapp BD, Lassmann H (2015) Pathological mechanisms in progressive multiple sclerosis. Lancet Neurol 14:183–193

    Article  CAS  PubMed  Google Scholar 

  3. Gran B, Hemmer B, Vergelli M et al (1999) Molecular mimicry and multiple sclerosis: degenerate T-cell recognition and the induction of autoimmunity. Ann Neurol 45:559–567

    Article  CAS  PubMed  Google Scholar 

  4. Trapp BD, Nave KA (2008) Multiple sclerosis: an immune or neurodegenerative disorder? Annu Rev Neurosci 31:247–269

    Article  CAS  PubMed  Google Scholar 

  5. Matute C, Alberdi E, Domercq M, Perez-Cerda F, Perez-Samartin A et al (2001) The link between excitotoxic oligodendroglial death and demyelinating diseases. Trends Neurosci 24:224–230

    Article  CAS  PubMed  Google Scholar 

  6. Kostic M, Zivkovic N, Stojanovic I (2013) Multiple sclerosis and glutamate excitotoxicity. Rev Neurosci 24:71–88

    Article  CAS  PubMed  Google Scholar 

  7. Wiendl H, Hohlfeld R (2009) Multiple sclerosis therapeutics: unexpected outcomes clouding undisputed successes. Neurology 72:1008–1015

    Article  CAS  PubMed  Google Scholar 

  8. Mastronardi FG, Moscarello MA (2005) Molecules affecting myelin stability: a novel hypothesis regarding the pathogenesis of multiple sclerosis. J Neurosci Res 80:301–308

    Article  CAS  PubMed  Google Scholar 

  9. Musse AA, Harauz G (2007) Molecular “negativity” may underlie multiple sclerosis: role of the myelin basic protein family in the pathogenesis of MS. Int Rev Neurobiol 79:149–172

    Article  CAS  PubMed  Google Scholar 

  10. Musse AA, Boggs JM, Harauz G (2006) Deimination of membrane-bound myelin basic protein in multiple sclerosis exposes an immunodominant epitope. Proc Natl Acad Sci USA 103:4422–4427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Casaccia-Bonnefil P, Pandozy G, Mastronardi F (2008) Evaluating epigenetic landmarks in the brain of multiple sclerosis patients: a contribution to the current debate on disease pathogenesis. Prog Neurobiol 86:368–378

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Cuzner ML, Norton WT (1996) Biochemistry of demyelination. Brain Pathol 6:231–242

    Article  CAS  PubMed  Google Scholar 

  13. Hu Y, Doudevski I, Wood D et al (2004) Synergistic interactions of lipids and myelin basic protein. Proc Natl Acad Sci USA 101:13466–13471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang CC, Walker AK, Zand R et al (2012) Myelin basic protein undergoes a broader range of modifications in mammals than in lower vertebrates. J Proteome Res 11:4791–4802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gyorgy B, Toth E, Tarcsa E et al (2006) Citrullination: a posttranslational modification in health and disease. Int J Biochem Cell Biol 38:1662–1677

    Article  PubMed  CAS  Google Scholar 

  16. Valesini G, Gerardi MC, Iannuccelli C et al (2015) Citrullination and autoimmunity. Autoimmun Rev 14:490–497

    Article  CAS  PubMed  Google Scholar 

  17. Nicholas AP, Whitaker JN (2002) Preparation of a monoclonal antibody to citrullinated epitopes: its characterization and some applications to immunohistochemistry in human brain. Glia 37:328–336

    Article  PubMed  Google Scholar 

  18. Moscarello MA, Wood DD, Ackerley C et al (1994) Myelin in multiple sclerosis is developmentally immature. J Clin Invest 94:146–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wood DD, Bilbao JM, O’Connors P et al (1996) Acute multiple sclerosis (Marburg type) is associated with developmentally immature myelin basic protein. Ann Neurol 40:18–24

    Article  CAS  PubMed  Google Scholar 

  20. Vossenaar ER, Zendman AJ, van Venrooij WJ et al (2003) PAD, a growing family of citrullinating enzymes: genes, features and involvement in disease. BioEssays 25:1106–1118

    Article  CAS  PubMed  Google Scholar 

  21. Wang S, Wang Y (2013) Peptidylarginine deiminases in citrullination, gene regulation, health and pathogenesis. Biochim Biophys Acta 1829:1126–1135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shimada N, Handa S, Uchida Y et al (2010) Developmental and age-related changes of peptidylarginine deiminase 2 in the mouse brain. J Neurosci Res 88:798–806

    CAS  PubMed  Google Scholar 

  23. van Beers JJ, Zendman AJ, Raijmakers R et al (2013) Peptidylarginine deiminase expression and activity in PAD2 knock-out and PAD4-low mice. Biochimie 95:299–308

    Article  PubMed  CAS  Google Scholar 

  24. Asaga H, Ishigami A (2001) Protein deimination in the rat brain after kainate administration: citrulline-containing proteins as a novel marker of neurodegeneration. Neurosci Lett 299:5–8

    Article  CAS  PubMed  Google Scholar 

  25. Acharya NK, Nagele EP, Han M et al (2012) Neuronal PAD4 expression and protein citrullination: possible role in production of autoantibodies associated with neurodegenerative disease. J Autoimmun 38:369–380

    Article  CAS  PubMed  Google Scholar 

  26. Vincent SR, Leung E, Watanabe K (1992) Immunohistochemical localization of peptidylarginine deiminase in the rat brain. J Chem Neuroanat 5:159–168

    Article  CAS  PubMed  Google Scholar 

  27. Asaga H, Akiyama K, Ohsawa T et al (2002) Increased and type II-specific expression of peptidylarginine deiminase in activated microglia but not hyperplastic astrocytes following kainic acid-evoked neurodegeneration in the rat brain. Neurosci Lett 326:129–132

    Article  CAS  PubMed  Google Scholar 

  28. Asaga H, Ishigami A (2007) Microglial expression of peptidylarginine deiminase 2 in the prenatal rat brain. Cell Mol Biol Lett 12:536–544

    Article  CAS  PubMed  Google Scholar 

  29. Akiyama K, Sakurai Y, Asou H et al (1999) Localization of peptidylarginine deiminase type II in a stage-specific immature oligodendrocyte from rat cerebral hemisphere. Neurosci Lett 274:53–55

    Article  CAS  PubMed  Google Scholar 

  30. Wood DD, Ackerley CA, Brand B et al (2008) Myelin localization of peptidylarginine deiminases 2 and 4: comparison of PAD2 and PAD4 activities. Lab Invest 88:354–364

    Article  CAS  PubMed  Google Scholar 

  31. Kp U, Subramanian V, Nicholas AP et al (2014) Modulation of calcium-induced cell death in human neural stem cells by the novel peptidylarginine deiminase-AIF pathway. Biochim Biophys Acta 1843:1162–1171

    Article  CAS  Google Scholar 

  32. Raijmakers R, Vogelzangs J, Raats J et al (2006) Experimental autoimmune encephalomyelitis induction in peptidylarginine deiminase 2 knockout mice. J Comp Neurol 498:217–226

    Article  CAS  PubMed  Google Scholar 

  33. Takahara H, Okamoto H, Sugawara K (1986) Calcium-dependent Properties of Peptidylarginine Deiminase from Rabbit Skeletal Muscle. Agric Biol Chem 50:2899–2904

    CAS  Google Scholar 

  34. Arita K, Hashimoto H, Shimizu T et al (2004) Structural basis for Ca(2+)-induced activation of human PAD4. Nat Struct Mol Biol 11:777–783

    Article  CAS  PubMed  Google Scholar 

  35. Liu YL, Tsai IC, Chang CW et al (2013) Functional roles of the non-catalytic calcium-binding sites in the N-terminal domain of human peptidylarginine deiminase 4. PLoS One 8:e51660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dong S, Kojima T, Shiraiwa M et al (2005) Regulation of the expression of peptidylarginine deiminase type II gene (PADI2) in human keratinocytes involves Sp1 and Sp3 transcription factors. J Invest Dermatol 124:1026–1033

    Article  CAS  PubMed  Google Scholar 

  37. Utz PJ, Gensler TJ, Anderson P (2000) Death, autoantigen modifications, and tolerance. Arthritis Res 2:101–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bates IR, Harauz G (2003) Molecular dynamics exposes alpha-helices in myelin basic protein. J Mol Model 9:290–297

    Article  CAS  PubMed  Google Scholar 

  39. Ahmed MA, Bamm VV, Harauz G et al (2010) Solid-state NMR spectroscopy of membrane-associated myelin basic protein–conformation and dynamics of an immunodominant epitope. Biophys J 99:1247–1255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pritzker LB, Joshi S, Gowan JJ et al (2000) Deimination of myelin basic protein. 1. Effect of deimination of arginyl residues of myelin basic protein on its structure and susceptibility to digestion by cathepsin D. Biochemistry 39:5374–5381

    Article  CAS  PubMed  Google Scholar 

  41. Cao L, Goodin R, Wood D et al (1999) Rapid release and unusual stability of immunodominant peptide 45–89 from citrullinated myelin basic protein. Biochemistry 38:6157–6163

    Article  CAS  PubMed  Google Scholar 

  42. D’Souza CA, Moscarello MA (2006) Differences in susceptibility of MBP charge isomers to digestion by stromelysin-1 (MMP-3) and release of an immunodominant epitope. Neurochem Res 31:1045–1054

    Article  PubMed  CAS  Google Scholar 

  43. D’Souza CA, Mak B, Moscarello MA (2002) The up-regulation of stromelysin-1 (MMP-3) in a spontaneously demyelinating transgenic mouse precedes onset of disease. J Biol Chem 277:13589–13596

    Article  PubMed  CAS  Google Scholar 

  44. D’Souza CA, Wood DD, She YM et al (2005) Autocatalytic cleavage of myelin basic protein: an alternative to molecular mimicry. Biochemistry 44:12905–12913

    Article  PubMed  CAS  Google Scholar 

  45. Moscarello MA, Mastronardi FG, Wood DD (2007) The role of citrullinated proteins suggests a novel mechanism in the pathogenesis of multiple sclerosis. Neurochem Res 32:251–256

    Article  CAS  PubMed  Google Scholar 

  46. Mastronardi FG, Mak B, Ackerley CA et al (1996) Modifications of myelin basic protein in DM20 transgenic mice are similar to those in myelin basic protein from multiple sclerosis. J Clin Invest 97:349–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wood DD, Moscarello MA (1989) The isolation, characterization, and lipid-aggregating properties of a citrulline containing myelin basic protein. J Biol Chem 264:5121–5127

    CAS  PubMed  Google Scholar 

  48. Seiwa C, Sugiyama I, Yagi T et al (2000) Fyn tyrosine kinase participates in the compact myelin sheath formation in the central nervous system. Neurosci Res 37:21–31

    Article  CAS  PubMed  Google Scholar 

  49. Boggs JM, Rangaraj G, Koshy KM et al (1999) Highly deiminated isoform of myelin basic protein from multiple sclerosis brain causes fragmentation of lipid vesicles. J Neurosci Res 57:529–535

    Article  CAS  PubMed  Google Scholar 

  50. Libich DS, Hill CM, Bates IR et al (2003) Interaction of the 18.5-kD isoform of myelin basic protein with Ca2+ -calmodulin: effects of deimination assessed by intrinsic Trp fluorescence spectroscopy, dynamic light scattering, and circular dichroism. Protein Sci 12:1507–1521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Boggs JM, Rangaraj G, Heng YM et al (2011) Myelin basic protein binds microtubules to a membrane surface and to actin filaments in vitro: effect of phosphorylation and deimination. Biochim Biophys Acta 1808:761–773

    Article  CAS  PubMed  Google Scholar 

  52. Kim JK, Mastronardi FG, Wood DD et al (2003) Multiple sclerosis: an important role for post-translational modifications of myelin basic protein in pathogenesis. Mol Cell Proteom 2:453–462

    CAS  Google Scholar 

  53. Pritzker LB, Joshi S, Harauz G et al (2000) Deimination of myelin basic protein. 2. Effect of methylation of MBP on its deimination by peptidylarginine deiminase. Biochemistry 39:5382–5388

    Article  CAS  PubMed  Google Scholar 

  54. Pantazou V, Schluep M, Du Pasquier R (2015) Environmental factors in multiple sclerosis. Presse Med 44:e113–e120

    Article  PubMed  Google Scholar 

  55. Harel-Meir M, Sherer Y, Shoenfeld Y (2007) Tobacco smoking and autoimmune rheumatic diseases. Nat Clin Pract Rheumatol 3:707–715

    Article  CAS  PubMed  Google Scholar 

  56. Luo J (2014) Autophagy and ethanol neurotoxicity. Autophagy 10:2099–2108

    Article  CAS  PubMed  Google Scholar 

  57. Berer K, Krishnamoorthy G (2014) Microbial view of central nervous system autoimmunity. FEBS Lett 588:4207–4213

    Article  CAS  PubMed  Google Scholar 

  58. Wegner N, Wait R, Sroka A et al (2010) Peptidylarginine deiminase from Porphyromonas gingivalis citrullinates human fibrinogen and alpha-enolase: implications for autoimmunity in rheumatoid arthritis. Arthritis Rheum 62:2662–2672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Koch MW, Metz LM, Agrawal SM et al (2013) Environmental factors and their regulation of immunity in multiple sclerosis. J Neurol Sci 324:10–16

    Article  PubMed  Google Scholar 

  60. van der Valk P, Amor S (2009) Preactive lesions in multiple sclerosis. Curr Opin Neurol 22:207–213

    PubMed  Google Scholar 

  61. Filippi M, Rocca MA, Barkhof F et al (2012) Association between pathological and MRI findings in multiple sclerosis. Lancet Neurol 11:349–360

    Article  PubMed  Google Scholar 

  62. Moscarello MA, Pritzker L, Mastronardi FG et al (2002) Peptidylarginine deiminase: a candidate factor in demyelinating disease. J Neurochem 81:335–343

    Article  CAS  PubMed  Google Scholar 

  63. Mastronardi FG, Noor A, Wood DD et al (2007) Peptidyl argininedeiminase 2 CpG island in multiple sclerosis white matter is hypomethylated. J Neurosci Res 85:2006–2016

    Article  CAS  PubMed  Google Scholar 

  64. Moscarello MA, Lei H, Mastronardi FG et al (2013) Inhibition of peptidyl-arginine deiminases reverses protein-hypercitrullination and disease in mouse models of multiple sclerosis. Dis Model Mech 6:467–478

    Article  CAS  PubMed  Google Scholar 

  65. Bradford CM, Ramos I, Cross AK et al (2014) Localisation of citrullinated proteins in normal appearing white matter and lesions in the central nervous system in multiple sclerosis. J Neuroimmunol 273:85–95

    Article  CAS  PubMed  Google Scholar 

  66. Abbas AK, Le K, Pimmett VL et al (2014) Negative regulation of the peptidylarginine deiminase type IV promoter by NF-kappaB in human myeloid cells. Gene 533:123–131

    Article  CAS  PubMed  Google Scholar 

  67. van Noort JM, van den Elsen PJ, van Horssen J et al (2011) Preactive multiple sclerosis lesions offer novel clues for neuroprotective therapeutic strategies. CNS neurol disord: drug targets 10:68–81

    Article  Google Scholar 

  68. Petzold A, Tozer DJ, Schmierer K (2011) Axonal damage in the making: neurofilament phosphorylation, proton mobility and magnetisation transfer in multiple sclerosis normal appearing white matter. Exp Neurol 232:234–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Anlar B, Karli-Oguz K, Yurtyapan OY et al (2006) Tracing immature myelin in acute disseminated encephalomyelitis. Turk J Pediatr 48:197–201

    PubMed  Google Scholar 

  70. Oguz KK, Kurne A, Aksu AO et al (2009) Assessment of citrullinated myelin by 1H-MR spectroscopy in early-onset multiple sclerosis. AJNR Am J Neuroradiol 30:716–721

    Article  CAS  PubMed  Google Scholar 

  71. Beniac DR, Wood DD, Palaniyar N et al (2000) Cryoelectron microscopy of protein-lipid complexes of human myelin basic protein charge isomers differing in degree of citrullination. J Struct Biol 129:80–95

    Article  CAS  PubMed  Google Scholar 

  72. Narayana PA, Doyle TJ, Lai D et al (1998) Serial proton magnetic resonance spectroscopic imaging, contrast-enhanced magnetic resonance imaging, and quantitative lesion volumetry in multiple sclerosis. Ann Neurol 43:56–71

    Article  CAS  PubMed  Google Scholar 

  73. Recks MS, Stormanns ER, Bader J et al (2013) Early axonal damage and progressive myelin pathology define the kinetics of CNS histopathology in a mouse model of multiple sclerosis. Clin Immunol 149:32–45

    Article  CAS  PubMed  Google Scholar 

  74. Cloos PA, Christgau S (2004) Post-translational modifications of proteins: implications for aging, antigen recognition, and autoimmunity. Biogerontology 5:139–158

    Article  CAS  PubMed  Google Scholar 

  75. Ishigami A, Maruyama N (2010) Importance of research on peptidylarginine deiminase and citrullinated proteins in age-related disease. Geriatr Gerontol Int 10(Suppl 1):S53–S58

    Article  PubMed  Google Scholar 

  76. Jang B, Jin JK, Jeon YC, Cho HJ et al (2010) Involvement of peptidylarginine deiminase-mediated post-translational citrullination in pathogenesis of sporadic Creutzfeldt–Jakob disease. Acta Neuropathol 119:199–210

    Article  CAS  PubMed  Google Scholar 

  77. Micu I, Jiang Q, Coderre E et al (2006) NMDA receptors mediate calcium accumulation in myelin during chemical ischaemia. Nature 439:988–992

    CAS  PubMed  Google Scholar 

  78. Smith GS, Paez PM, Spreuer V et al (2011) Classical 18.5-and 21.5-kDa isoforms of myelin basic protein inhibit calcium influx into oligodendroglial cells, in contrast to golli isoforms. J Neurosci Res 89:467–480

    Article  CAS  PubMed  Google Scholar 

  79. Lang HL, Jacobsen H, Ikemizu S et al (2002) A functional and structural basis for TCR cross-reactivity in multiple sclerosis. Nat Immunol 3:940–943

    Article  CAS  PubMed  Google Scholar 

  80. Brimnes MK, Hansen BE, Nielsen LK et al (2014) Uptake and presentation of myelin basic protein by normal human B cells. PLoS One 9:e113388

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Wucherpfennig KW, Sette A, Southwood S et al (1994) Structural requirements for binding of an immunodominant myelin basic protein peptide to DR2 isotypes and for its recognition by human T cell clones. J Exp Med 179:279–290

    Article  CAS  PubMed  Google Scholar 

  82. Wucherpfennig KW, Catz I, Hausmann S et al (1997) Recognition of the immunodominant myelin basic protein peptide by autoantibodies and HLA-DR2-restricted T cell clones from multiple sclerosis patients. Identity of key contact residues in the B-cell and T-cell epitopes. J Clin Invest 100:1114–1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Loo EW, Krantz MJ, Agrawal B (2012) High dose antigen treatment with a peptide epitope of myelin basic protein modulates T cells in multiple sclerosis patients. Cell Immunol 280:10–15

    Article  CAS  PubMed  Google Scholar 

  84. James EA, Moustakas AK, Bui J et al (2010) HLA-DR1001 presents “altered-self” peptides derived from joint-associated proteins by accepting citrulline in three of its binding pockets. Arthritis Rheum 62:2909–2918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. De Groot CJ, Bergers E, Kamphorst W et al (2001) Post-mortem MRI-guided sampling of multiple sclerosis brain lesions: increased yield of active demyelinating and (p)reactive lesions. Brain 124:1635–1645

    Article  PubMed  Google Scholar 

  86. van Horssen J, Singh S, van der Pol S et al (2012) Clusters of activated microglia in normal-appearing white matter show signs of innate immune activation. J Neuroinflamm 9:156

    Article  CAS  Google Scholar 

  87. Stys PK, Zamponi GW, van Minnen J et al (2012) Will the real multiple sclerosis please stand up? Nat Rev Neurosci 13:507–514

    Article  CAS  PubMed  Google Scholar 

  88. Anderton SM (2004) Post-translational modifications of self antigens: implications for autoimmunity. Curr Opin Immunol 16:753–758

    Article  CAS  PubMed  Google Scholar 

  89. Li H, Cuzner ML, Newcombe J (1996) Microglia-derived macrophages in early multiple sclerosis plaques. Neuropathol Appl Neurobiol 22:207–215

    Article  CAS  PubMed  Google Scholar 

  90. Krogsgaard M, Wucherpfennig KW, Cannella B et al (2000) Visualization of myelin basic protein (MBP) T cell epitopes in multiple sclerosis lesions using a monoclonal antibody specific for the human histocompatibility leukocyte antigen (HLA)-DR2-MBP 85-99 complex. J Exp Med 191:1395–1412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Musse AA, Li Z, Ackerley CA et al (2008) Peptidylarginine deiminase 2 (PAD2) overexpression in transgenic mice leads to myelin loss in the central nervous system. Dis Model Mech 1:229–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Singh S, Metz I, Amor S et al (2013) Microglial nodules in early multiple sclerosis white matter are associated with degenerating axons. Acta Neuropathol 125:595–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. de Haan EC, Wagenaar-Hilbers JP, Liskamp RM et al (2005) Limited plasticity in T cell recognition of modified T cell receptor contact residues in MHC class II bound peptides. Mol Immunol 42:355–364

    Article  PubMed  CAS  Google Scholar 

  94. Spyranti Z, Tselios T, Deraos G et al (2010) NMR structural elucidation of myelin basic protein epitope 83-99 implicated in multiple sclerosis. Amino Acids 38:929–936

    Article  CAS  PubMed  Google Scholar 

  95. Hansen BE, Nielsen CH, Madsen HO et al (2011) The HLA-DP2 protein binds the immunodominant epitope from myelin basic protein, MBP85–99, with high affinity. Tissue Antigens 77:229–234

    Article  CAS  PubMed  Google Scholar 

  96. Deraos G, Chatzantoni K, Matsoukas MT et al (2008) Citrullination of linear and cyclic altered peptide ligands from myelin basic protein (MBP(87–99)) epitope elicits a Th1 polarized response by T cells isolated from multiple sclerosis patients: implications in triggering disease. J Med Chem 51:7834–7842

    Article  CAS  PubMed  Google Scholar 

  97. Wekerle H, Sun D, Oropeza-Wekerle RL et al (1987) Immune reactivity in the nervous system: modulation of T-lymphocyte activation by glial cells. J Exp Biol 132:43–57

    CAS  PubMed  Google Scholar 

  98. Martin R, Whitaker JN, Rhame L et al (1994) Citrulline-containing myelin basic protein is recognized by T-cell lines derived from multiple sclerosis patients and healthy individuals. Neurology 44:123–129

    Article  CAS  PubMed  Google Scholar 

  99. Cao L, Sun D, Whitaker JN (1998) Citrullinated myelin basic protein induces experimental autoimmune encephalomyelitis in Lewis rats through a diverse T cell repertoire. J Neuroimmunol 88:21–29

    Article  CAS  PubMed  Google Scholar 

  100. Tranquill LR, Cao L, Ling NC et al (2000) Enhanced T cell responsiveness to citrulline-containing myelin basic protein in multiple sclerosis patients. Mult Scler 6:220–225

    Article  CAS  PubMed  Google Scholar 

  101. Alvarez JI, Saint-Laurent O, Godschalk A et al (2015) Focal disturbances in the blood-brain barrier are associated with formation of neuroinflammatory lesions. Neurobiol Dis 74:14–24

    Article  CAS  PubMed  Google Scholar 

  102. Kant R, Pasi S, Surolia A (2015) Homo-beta-amino acid containing MBP(85–99) analogs alleviate experimental autoimmune encephalomyelitis. Sci Rep 5:8205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bogie JF, Stinissen P, Hendriks JJ (2014) Macrophage subsets and microglia in multiple sclerosis. Acta Neuropathol 128:191–213

    Article  CAS  PubMed  Google Scholar 

  104. Liu H, Shiryaev SA, Chernov AV et al (2012) Immunodominant fragments of myelin basic protein initiate T cell-dependent pain. J Neuroinflammation 9:119

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Carrillo-Vico A, Leech MD, Anderton SM (2010) Contribution of myelin autoantigen citrullination to T cell autoaggression in the central nervous system. J Immunol 184:2839–2846

    Article  CAS  PubMed  Google Scholar 

  106. Steinman L (2014) Immunology of relapse and remission in multiple sclerosis. Annu Rev Immunol 32:257–281

    Article  CAS  PubMed  Google Scholar 

  107. Bodil Roth E, Theander E, Londos E et al (2008) Pathogenesis of autoimmune diseases: antibodies against transglutaminase, peptidylarginine deiminase and protein-bound citrulline in primary Sjogren’s syndrome, multiple sclerosis and Alzheimer’s disease. Scand J Immunol 67:626–631

    Article  CAS  PubMed  Google Scholar 

  108. de Seze J, Dubucquoi S, Lefranc D et al (2001) IgG reactivity against citrullinated myelin basic protein in multiple sclerosis. J Neuroimmunol 117:149–155

    Article  PubMed  Google Scholar 

  109. Martino G, Olsson T, Fredrikson S et al (1991) Cells producing antibodies specific for myelin basic protein region 70-89 are predominant in cerebrospinal fluid from patients with multiple sclerosis. Eur J Immunol 21:2971–2976

    Article  CAS  PubMed  Google Scholar 

  110. Soderstrom M, Link H, Xu Z, Fredriksson S (1993) Optic neuritis and multiple sclerosis: anti-MBP and anti-MBP peptide antibody-secreting cells are accumulated in CSF. Neurology 43:1215–1222

    Article  CAS  PubMed  Google Scholar 

  111. Noerager BD, Inuzuka T, Kira J et al (2001) An IgM anti-MBP Ab in a case of Waldenstrom’s macroglobulinemia with polyneuropathy expressing an idiotype reactive with an MBP epitope immunodominant in MS and EAE. J Neuroimmunol 113:163–169

    Article  CAS  PubMed  Google Scholar 

  112. Reindl M, Linington C, Brehm U et al (1999) Antibodies against the myelin oligodendrocyte glycoprotein and the myelin basic protein in multiple sclerosis and other neurological diseases: a comparative study. Brain 122(Pt 11):2047–2056

    Article  PubMed  Google Scholar 

  113. Frischer JM, Bramow S, Dal-Bianco A et al (2009) The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain 132:1175–1189

    Article  PubMed  PubMed Central  Google Scholar 

  114. Kidd BA, Ho PP, Sharpe O et al (2008) Epitope spreading to citrullinated antigens in mouse models of autoimmune arthritis and demyelination. Arthritis Res Ther 10:R119

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Genain CP, Cannella B, Hauser SL et al (1999) Identification of autoantibodies associated with myelin damage in multiple sclerosis. Nat Med 5:170–175

    Article  CAS  PubMed  Google Scholar 

  116. Alpayci M, Milanlioglu A, Delen V et al (2015) Anti-CCP antibody levels are not associated with MS: results from a case-control study. Biomed Res Int 2015:817427

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Makrygiannakis D, af Klint E, Lundberg IE et al (2006) Citrullination is an inflammation-dependent process. Ann Rheum Dis 65:1219–1222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Nicholas AP, Sambandam T, Echols JD et al (2005) Expression of citrullinated proteins in murine experimental autoimmune encephalomyelitis. J Comp Neurol 486:254–266

    Article  CAS  PubMed  Google Scholar 

  119. Raijmakers R, Vogelzangs J, Croxford JL et al (2005) Citrullination of central nervous system proteins during the development of experimental autoimmune encephalomyelitis. J Comp Neurol 486:243–253

    Article  PubMed  Google Scholar 

  120. Nicholas AP, Sambandam T, Echols JD et al (2004) Increased citrullinated glial fibrillary acidic protein in secondary progressive multiple sclerosis. J Comp Neurol 473:128–136

    Article  CAS  PubMed  Google Scholar 

  121. Calabrese R, Zampieri M, Mechelli R et al (2012) Methylation-dependent PAD2 upregulation in multiple sclerosis peripheral blood. Mult Scler 18:299–304

    Article  CAS  PubMed  Google Scholar 

  122. Harauz G, Musse AA (2007) A tale of two citrullines–structural and functional aspects of myelin basic protein deimination in health and disease. Neurochem Res 32:137–158

    Article  CAS  PubMed  Google Scholar 

  123. Willison HJ, Linington C (2012) Antibodies to MOG in NMO: a seasoned veteran finds a new role. Neurology 79:1198–1199

    Article  PubMed  Google Scholar 

  124. Shanshiashvili LV, Kalandadze IV, Ramsden JJ et al (2012) Adhesive properties and inflammatory potential of citrullinated myelin basic protein peptide 45–89. Neurochem Res 37:1959–1966

    Article  CAS  PubMed  Google Scholar 

  125. Stapulionis R, Oliveira CL, Gjelstrup MC et al (2008) Structural insight into the function of myelin basic protein as a ligand for integrin alpha M beta 2. J Immunol 180:3946–3956

    Article  CAS  PubMed  Google Scholar 

  126. Bramow S, Frischer JM, Lassmann H et al (2010) Demyelination versus remyelination in progressive multiple sclerosis. Brain 133:2983–2998

    Article  PubMed  Google Scholar 

  127. Kotter MR, Li WW, Zhao C et al (2006) Myelin impairs CNS remyelination by inhibiting oligodendrocyte precursor cell differentiation. J Neurosci 26:328–332

    Article  CAS  PubMed  Google Scholar 

  128. Plemel JR, Manesh SB, Sparling JS et al (2013) Myelin inhibits oligodendroglial maturation and regulates oligodendrocytic transcription factor expression. Glia 61:1471–1487

    Article  PubMed  Google Scholar 

  129. Pritzker LB, Moscarello MA (1998) A novel microtubule independent effect of paclitaxel: the inhibition of peptidylarginine deiminase from bovine brain. Biochim Biophys Acta 1388:154–160

    Article  CAS  PubMed  Google Scholar 

  130. Moscarello MA, Mak B, Nguyen TA et al (2002) Paclitaxel (Taxol) attenuates clinical disease in a spontaneously demyelinating transgenic mouse and induces remyelination. Mult Scler 8:130–138

    Article  CAS  PubMed  Google Scholar 

  131. Mastronardi FG, Tsui H, Winer S et al (2007) Synergy between paclitaxel plus an exogenous methyl donor in the suppression of murine demyelinating diseases. Mult Scler 13:596–609

    Article  CAS  PubMed  Google Scholar 

  132. Wei L, Wasilewski E, Chakka SK et al (2013) Novel inhibitors of protein arginine deiminase with potential activity in multiple sclerosis animal model. J Med Chem 56:1715–1722

    Article  CAS  PubMed  Google Scholar 

  133. Kim JY, Shen S, Dietz K, He Y, Howell O et al (2010) HDAC1 nuclear export induced by pathological conditions is essential for the onset of axonal damage. Nat Neurosci 13:180–189

    Article  PubMed  CAS  Google Scholar 

  134. Jang B, Ishigami A, Maruyama N, Carp RI, Kim YS et al (2013) Peptidylarginine deiminase and protein citrullination in prion diseases: strong evidence of neurodegeneration. Prion 7:42–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Yi-fan Du, department of medical imaging, Dalian Medical University for producing Fig. 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Piao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Tan, D. & Piao, H. Myelin Basic Protein Citrullination in Multiple Sclerosis: A Potential Therapeutic Target for the Pathology. Neurochem Res 41, 1845–1856 (2016). https://doi.org/10.1007/s11064-016-1920-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-016-1920-2

Keywords

Navigation