Skip to main content
Log in

Involvement of peptidylarginine deiminase-mediated post-translational citrullination in pathogenesis of sporadic Creutzfeldt-Jakob disease

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Peptidylarginine deiminases (PADs)-mediated post-translational citrullination processes play key roles in protein functions and structural stability through the conversion of arginine to citrulline in the presence of excessive calcium concentrations. In brain, PAD2 is abundantly expressed and can be involved in citrullination in disease. Recently, we have reported pathological characterization of PAD2 and citrullinated proteins in scrapie-infected mice, but the implication of protein citrullination in the pathophysiology in human prion disease is not clear. In the present study, we explored the molecular and biological involvement of PAD2 and the pathogenesis of citrullinated proteins in frontal cortex of patients with sporadic Creutzfeldt-Jakob disease (sCJD). We found increased expression of PAD2 in reactive astrocytes that also contained increased levels of citrullinated proteins. In addition, PAD activity was significantly elevated in patients with sCJD compared to controls. From two-dimensional gel electrophoresis and MALDI-TOF mass analysis, we found various citrullinated candidates, including cytoskeletal and energy metabolism-associated proteins such as vimentin, glial fibrillary acidic protein, enolase, and phosphoglycerate kinase. Based on these findings, our investigations suggest that PAD2 activation and aberrant citrullinated proteins could play a role in pathogenesis and have value as a marker for the postmortem classification of neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

PAD:

Peptidylarginine deiminase

CJD:

Creutzfeldt-Jakob disease

PrP:

Prion protein

CNS:

Central nervous system

2-DE:

Two-dimensional gel electrophoresis

MALDI-TOF mass:

Matrix-assisted laser desorption/ionization-time of flight mass

BAEE:

Benzoyl-l-arginine ethyl ester

SDS:

Sodium dodecyl sulfate

anti-MC:

Anti-modified citrulline

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

GFAP:

Glial fibrillary acidic protein

MBP:

Myelin basic protein

AD:

Alzheimer’s disease

References

  1. Aguzzi A, Sigurdson C, Heikenwaelder M (2008) Molecular mechanisms of prion pathogenesis. Annu Rev Pathol 3:11–40

    Article  PubMed  CAS  Google Scholar 

  2. Arita K, Hashimoto H, Shimizu T, Nakashima K, Yamada M, Sato M (2004) Structural basis for Ca(2+)-induced activation of human PAD4. Nat Struct Mol Biol 11:777–783

    Article  PubMed  CAS  Google Scholar 

  3. Aronica E, Yankaya B, Jansen GH et al (2001) Ionotropic and metabotropic glutamate receptor protein expression in glioneuronal tumours from patients with intractable epilepsy. Neuropathol Appl Neurobiol 27:223–237

    Article  PubMed  CAS  Google Scholar 

  4. Asaga H, Akiyama K, Ohsawa T, Ishigami A (2002) Increased and type II-specific expression of peptidylarginine deiminase in activated microglia but not hyperplastic astrocytes following kainic acid-evoked neurodegeneration in the rat brain. Neurosci Lett 326:129–132

    Article  PubMed  CAS  Google Scholar 

  5. Asaga H, Ishigami A (2001) Protein deimination in the rat brain after kainate administration: citrulline-containing proteins as a novel marker of neurodegeneration. Neurosci Lett 299:5–8

    Article  PubMed  CAS  Google Scholar 

  6. Bhattacharya SK, Bhat MB, Takahara H (2006) Modulation of peptidyl arginine deiminase 2 and implication for neurodegeneration. Curr Eye Res 31:1063–1071

    Article  PubMed  CAS  Google Scholar 

  7. Bhattacharya SK, Crabb JS, Bonilha VL, Gu X, Takahara H, Crabb JW (2006) Proteomics implicates peptidyl arginine deiminase 2 and optic nerve citrullination in glaucoma pathogenesis. Invest Ophthalmol Vis Sci 47:2508–2514

    Article  PubMed  Google Scholar 

  8. Brown AM, Ransom BR (2007) Astrocyte glycogen and brain energy metabolism. Glia 55:1263–1271

    Article  PubMed  Google Scholar 

  9. Castilla J, Saá P, Soto C (2005) Detection of prions in blood. Nat Med 11:982–985

    PubMed  CAS  Google Scholar 

  10. Chang X, Han J (2006) Expression of peptidylarginine deiminase type 4 (PAD4) in various tumors. Mol Carcinog 45:183–196

    Article  PubMed  CAS  Google Scholar 

  11. Chang X, Han J, Pang L, Zhao Y, Yang Y, Shen Z (2009) Increased PADI4 expression in blood and tissues of patients with malignant tumors. BMC Cancer 9:40

    Article  PubMed  CAS  Google Scholar 

  12. Cornell-Bell AH, Finkbeiner SM, Cooper MS, Smith SJ (1990) Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science 247:470–473

    Article  PubMed  CAS  Google Scholar 

  13. DeArmond SJ, Fajardo M, Naughton SA, Eng LF (1983) Degradation of glial fibrillary acidic protein by a calcium dependent proteinase: an electroblot study. Brain Res 262:275–282

    Article  PubMed  CAS  Google Scholar 

  14. Eddleston M, Mucke L (1993) Molecular profile of reactive astrocytes—implications for their role in neurologic disease. Neuroscience 54:15–36

    Article  PubMed  CAS  Google Scholar 

  15. Evers S, Droste DW, Lüdemann P, Oberwittler C (1998) Early elevation of cerebrospinal fluid neuron-specific enolase in Creutzfeldt-Jakob disease. J Neurol 245:52–53

    Article  PubMed  CAS  Google Scholar 

  16. Fiacco TA, McCarthy KD (2006) Astrocyte calcium elevations: properties, propagation, and effects on brain signaling. Glia 54:676–690

    Article  PubMed  Google Scholar 

  17. Freixes M, Rodríguez A, Dalfó E, Ferrer I (2006) Oxidation, glycoxidation, lipoxidation, nitration, and responses to oxidative stress in the cerebral cortex in Creutzfeldt-Jakob disease. Neurobiol Aging 27:1807–1815

    Article  PubMed  CAS  Google Scholar 

  18. Gottlieb M, Matute C (1997) Expression of ionotropic glutamate receptor subunits in glial cells of the hippocampal CA1 area following transient forebrain ischemia. J Cereb Blood Flow Metab 17:290–300

    Article  PubMed  CAS  Google Scholar 

  19. Gray BC, Skipp P, O’Connor VM, Perry VH (2006) Increased expression of glial fibrillary acidic protein fragments and mu-calpain activation within the hippocampus of prion-infected mice. Biochem Soc Trans 34:51–54

    Article  PubMed  CAS  Google Scholar 

  20. Guentchev M, Voigtländer T, Haberler C, Groschup MH, Budka H (2000) Evidence for oxidative stress in experimental prion disease. Neurobiol Dis 7:270–273

    Article  PubMed  CAS  Google Scholar 

  21. Hernandez MR, Agapova OA, Yang P, Salvador-Silva M, Ricard CS, Aoi S (2002) Differential gene expression in astrocytes from human normal and glaucomatous optic nerve head analyzed by cDNA microarray. Glia 38:45–64

    Article  PubMed  Google Scholar 

  22. Hsich G, Kenney K, Gibbs CJ, Lee KH, Harrington MG (1996) The 14-3-3 brain protein in cerebrospinal fluid as a marker for transmissible spongiform encephalopathies. N Engl J Med 335:924–930

    Article  PubMed  CAS  Google Scholar 

  23. Imboden JB (2009) The immunopathogenesis of rheumatoid arthritis. Annu Rev Pathol 4:417–434

    Article  PubMed  CAS  Google Scholar 

  24. Ishigami A, Ohsawa T, Hiratsuka M et al (2005) Abnormal accumulation of citrullinated proteins catalyzed by peptidylarginine deiminase in hippocampal extracts from patients with Alzheimer’s disease. J Neurosci Res 80:120–128

    Article  PubMed  CAS  Google Scholar 

  25. Jang B, Kim E, Choi JK et al (2008) Accumulation of citrullinated proteins by up-regulated peptidylarginine deiminase 2 in brains of scrapie-infected mice: a possible role in pathogenesis. Am J Pathol 173:1129–1142

    Article  PubMed  CAS  Google Scholar 

  26. Jimi T, Wakayama Y, Shibuya S et al (1992) High levels of nervous system-specific proteins in cerebrospinal fluid in patients with early stage Creutzfeldt-Jakob disease. Clin Chim Acta 211:37–46

    Article  PubMed  CAS  Google Scholar 

  27. Jin JK, Choi JK, Lee HG, Kim YS, Carp RI, Choi EK (1999) Increased expression of CaM kinase II alpha in the brains of scrapie-infected mice. Neurosci Lett 273:37–40

    Article  PubMed  CAS  Google Scholar 

  28. Johnston AR, Black C, Fraser J, MacLeod N (1997) Scrapie infection alters the membrane and synaptic properties of mouse hippocampal CA1 pyramidal neurones. J Physiol 500:1–15

    PubMed  CAS  Google Scholar 

  29. Kascsak RJ, Rubenstein R, Merz PA et al (1987) Mouse polyclonal and monoclonal antibody to scrapie-associated fibril proteins. J Virol 61:3688–3693

    PubMed  CAS  Google Scholar 

  30. Kim JI, Ju WK, Choi JH et al (1999) Expression of cytokine genes and increased nuclear factor-kappa B activity in the brains of scrapie-infected mice. Mol Brain Res 73:17–27

    Article  PubMed  CAS  Google Scholar 

  31. Kizawa K, Takahara H, Troxler H, Kleinert P, Mochida U, Heizmann CW (2008) Specific citrullination causes assembly of a globular S100A3 homotetramer: a putative Ca2+ modulator matures human hair cuticle. J Biol Chem 283:5004–5013

    Article  PubMed  CAS  Google Scholar 

  32. Klareskog L, Rönnelid J, Lundberg K, Padyukov L, Alfredsson L (2008) Immunity to citrullinated proteins in rheumatoid arthritis. Annu Rev Immunol 26:651–675

    Article  PubMed  CAS  Google Scholar 

  33. Kordek R, Nerurkar VR, Liberski PP et al (1996) Heightened expression of tumor necrosis factor a, interleukin 1a, and glial fibrillary acidic protein in experimental Creutzfeldt-Jakob disease in mice. Proc Natl Acad Sci USA 93:9754–9758

    Article  PubMed  CAS  Google Scholar 

  34. Ladogana A, Puopolo M, Croes EA et al (2005) Mortality from Creutzfeldt-Jakob disease and related disorders in Europe, Australia, and Canada. Neurology 64:1586–1591

    Article  PubMed  CAS  Google Scholar 

  35. Loos T, Mortier A, Gouwy M et al (2008) Citrullination of CXCL10 and CXCL11 by peptidylarginine deiminase: a naturally occurring posttranslational modification of chemokines and new dimension of immunoregulation. Blood 112:2648–2656

    Article  PubMed  CAS  Google Scholar 

  36. Mastronardi FG, Wood DD, Mei J et al (2006) Increased citrullination of histone H3 in multiple sclerosis brain and animal models of demyelination: a role for tumor necrosis factor-induced peptidylarginine deiminase 4 translocation. J Neurosci 26:11387–11396

    Article  PubMed  CAS  Google Scholar 

  37. Méchin MC, Sebbag M, Arnaud J et al (2007) Update on peptidylarginine deiminases and deimination in skin physiology and severe human diseases. Int J Cosmet Sci 29:147–168

    Article  PubMed  Google Scholar 

  38. Moscarello MA, Mastronardi FG, Wood DD (2007) The role of citrullinated proteins suggests a novel mechanism in the pathogenesis of multiple sclerosis. Neurochem Res 32:251–256

    Article  PubMed  CAS  Google Scholar 

  39. Mouser PE, Head E, Ha KH, Rohn TT (2006) Caspase-mediated cleavage of glial fibrillary acidic protein within degenerating astrocytes of the Alzheimer’s disease brain. Am J Pathol 168:936–946

    Article  PubMed  CAS  Google Scholar 

  40. Musse AA, Li Z, Ackerley CA et al (2008) Peptidylarginine deiminase 2 (PAD2) overexpression in transgenic mice leads to myelin loss in the central nervous system. Dis Model Mech 1:229–240

    Article  PubMed  CAS  Google Scholar 

  41. Nakashima K, Hagiwara T, Yamada M (2002) Nuclear localization of peptidylarginine deiminase V and histone deimination in granulocytes. J Biol Chem 277:49562–49568

    Article  PubMed  CAS  Google Scholar 

  42. Nicholas AP, King JL, Sambandam T et al (2003) Immunohistochemical localization of citrullinated proteins in adult rat brain. J Comp Neurol 459:251–266

    Article  PubMed  CAS  Google Scholar 

  43. Nicholas AP, Sambandam T, Echols JD, Tourtellotte WW (2004) Increased citrullinated glial fibrillary acidic protein in secondary progressive multiple sclerosis. J Comp Neurol 473:128–136

    Article  PubMed  CAS  Google Scholar 

  44. Newcombe J, Woodroofe MN, Cuzner ML (1986) Distribution of glial fibrillary acidic protein in gliosed human white matter. J Neurochem 47:1713–1719

    Article  PubMed  CAS  Google Scholar 

  45. Otvos L Jr, Cudic M (2002) Post-translational modifications in prion proteins. Curr Protein Pept Sci 3:643–652

    Article  PubMed  CAS  Google Scholar 

  46. Pamplona R, Naudí A, Gavín R et al (2008) Increased oxidation, glycoxidation, and lipoxidation of brain proteins in prion disease. Free Radic Biol Med 45:1159–1166

    Article  PubMed  CAS  Google Scholar 

  47. Pekny M, Nilsson M (2005) Astrocyte activation and reactive gliosis. Glia 50:427–434

    Article  PubMed  Google Scholar 

  48. Peoc’h K, Manivet P, Beaudry P et al (2000) Identification of three novel mutations (E196K, V203I, E211Q) in the prion protein gene (PRNP) in inherited prion diseases with Creutzfeldt-Jakob disease phenotype. Hum Mutat 15:482

    Article  PubMed  Google Scholar 

  49. Pritzker LB, Joshi S, Gowan JJ, Harauz G, Moscarello MA (2000) Deimination of myelin basic protein. 1. Effect of deimination of arginyl residues of myelin basic protein on its structure and susceptibility to digestion by cathepsin D. Biochemistry 39:5374–5381

    Article  PubMed  CAS  Google Scholar 

  50. Proost P, Loos T, Mortier A et al (2008) Citrullination of CXCL8 by peptidylarginine deiminase alters receptor usage, prevents proteolysis, and dampens tissue inflammation. J Exp Med 205:2085–2097

    Article  PubMed  CAS  Google Scholar 

  51. Prusiner SB (1998) Prions. Proc Natl Acad Sci USA 95:13363–13383

    Article  PubMed  CAS  Google Scholar 

  52. Raijmakers R, Vogelzangs J, Raats J et al (2006) Experimental autoimmune encephalomyelitis induction in peptidylarginine deiminase 2 knockout mice. J Comp Neurol 498:217–226

    Article  PubMed  CAS  Google Scholar 

  53. Sandberg MK, Wallén P, Wikström MA, Kristensson K (2004) Scrapie-infected GT1-1 cells show impaired function of voltage-gated N-type calcium channels (Ca(v) 2.2) which is ameliorated by quinacrine treatment. Neurobiol Dis 15:143–151

    Article  PubMed  CAS  Google Scholar 

  54. Senshu T, Sato T, Inoue T, Akiyama K, Asaga H (1992) Detection of citrulline residues in deiminated proteins on polyvinylidene difluoride membrane. Anal Biochem 203:94–100

    Article  PubMed  CAS  Google Scholar 

  55. Shaked GM, Shaked Y, Kariv-Inbal Z, Halimi M, Avraham I, Gabizon R (2001) A protease-resistant prion protein isoform is present in urine of animals and humans affected with prion diseases. J Biol Chem 276:31479–31482

    Article  PubMed  CAS  Google Scholar 

  56. Shimada N, Handa S, Uchida Y et al (2009) Developmental and age-related changes of peptidylarginine deiminase 2 in the mouse brain. J Neurosci Res (in press)

  57. Sorgato MC, Bertoli A (2009) From cell protection to death: may Ca2+ signals explain the chameleonic attributes of the mammalian prion protein? Biochem Biophys Res Commun 379:171–174

    Article  PubMed  CAS  Google Scholar 

  58. Tarcsa E, Marekov LN, Mei G, Melino G, Lee SC, Steinert PM (1996) Protein unfolding by peptidylarginine deiminase. Substrate specificity and structural relationships of the natural substrates trichohyalin and filaggrin. J Biol Chem 271:30709–30716

    Article  PubMed  CAS  Google Scholar 

  59. Vossenaar ER, Radstake TR, van der Heijden A et al (2004) Expression and activity of citrullinating peptidylarginine deiminase enzymes in monocytes and macrophages. Ann Rheum Dis 63:373–381

    Article  PubMed  CAS  Google Scholar 

  60. Vossenaar ER, Zendman AJ, van Venrooij WJ, Pruijn GJ (2003) PAD, a growing family of citrullinating enzymes: genes, features and involvement in disease. Bioessays 25:1106–1118

    Article  PubMed  CAS  Google Scholar 

  61. Wang Y, Wysocka J, Sayegh J et al (2004) Human PAD4 regulates histone arginine methylation levels via demethylimination. Science 306:279–283

    Article  PubMed  CAS  Google Scholar 

  62. Wood DD, Ackerley CA, Brand B et al (2008) Myelin localization of peptidylarginine deiminases 2 and 4: comparison of PAD2 and PAD4 activities. Lab Invest 88:354–364

    Article  PubMed  CAS  Google Scholar 

  63. Wood DD, Moscarello MA (1989) The isolation, characterization, and lipid-aggregating properties of a citrulline containing myelin basic protein. J Biol Chem 264:5121–5127

    PubMed  CAS  Google Scholar 

  64. Young DS, Meersman F, Oxley D et al (2009) Effect of enzymatic deimination on the conformation of recombinant prion protein. Biochim Biophys Acta 1794:1123–1133

    PubMed  CAS  Google Scholar 

  65. Zonta M, Angulo MC, Gobbo S et al (2003) Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat Neurosci 6:43–50

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant of the Korea Healthcare technology R&D Project, Ministry for Health, Welfare and Family Affairs, Republic of Korea (A085082).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eun-Kyoung Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jang, B., Jin, JK., Jeon, YC. et al. Involvement of peptidylarginine deiminase-mediated post-translational citrullination in pathogenesis of sporadic Creutzfeldt-Jakob disease. Acta Neuropathol 119, 199–210 (2010). https://doi.org/10.1007/s00401-009-0625-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-009-0625-x

Keywords

Navigation