Skip to main content
Log in

Protective Effect of Oral Hesperetin Against Unilateral Striatal 6-Hydroxydopamine Damage in the Rat

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is a neurodegenerative disorder due to loss of dopaminergic neurons in the substantia nigra pars compacta (SNC). PD finally leads to incapacitating symptoms including motor and cognitive deficits. This study was undertaken to assess protective effect of the flavanone hesperetin against striatal 6-hydroxydopamine lesion and to explore in more detail some underlying mechanisms including apoptosis, inflammation and oxidative stress. In this research study, intrastriatal 6-hydroxydopamine (6-OHDA)-lesioned rats received hesperetin (50 mg/kg/day) for 1 week. Hesperetin reduced apomorphine-induced rotational asymmetry and decreased the latency to initiate and the total time on the narrow beam task. It also attenuated striatal malondialdehyde and enhanced striatal catalase activity and GSH content, lowered striatal level of glial fibrillary acidic protein as an index of astrogliosis and increased Bcl2 with no significant change of the nuclear factor NF-kB as a marker of inflammation. Hesperetin treatment was also capable to mitigate nigral DNA fragmentation as an index of apoptosis and to prevent loss of SNC dopaminergic neurons. This study indicated the protective effect of hesperetin in an early model of PD via attenuation of apoptosis, astrogliosis marker and oxidative stress and it may be helpful as an adjuvant therapy for management of PD at its early stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Massano J, Bhatia KP (2012) Clinical approach to Parkinson’s disease: features, diagnosis, and principles of management. Cold Spring Harb Perspect Med 2:a008870

    Article  PubMed  PubMed Central  Google Scholar 

  2. Jannetta PJ, Whiting DM, Fletcher LH, Hobbs JK, Brillman J, Quigley M, Fukui M, Williams R (2011) Parkinson’s disease: an inquiry into the etiology and treatment. Neurol Int 3:e7

    Article  PubMed  PubMed Central  Google Scholar 

  3. Schapira AH, Jenner P (2011) Etiology and pathogenesis of Parkinson’s disease. Mov Disord 26:1049–1055

    Article  PubMed  Google Scholar 

  4. Seidl SE, Santiago JA, Bilyk H, Potashkin JA (2014) The emerging role of nutrition in Parkinson’s disease. Front Aging Neurosci 6:36

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kanaze FI, Bounartzi MI, Georgarakis M, Niopas I (2007) Pharmacokinetics of the citrus flavanone aglycones hesperetin and naringenin after single oral administration in human subjects. Eur J Clin Nutr 61:472–477

    CAS  PubMed  Google Scholar 

  6. Palit S, Kar S, Sharma G, Das PK (2015) Hesperetin induces apoptosis in breast carcinoma by triggering accumulation of ROS and activation of ASK1/JNK pathway. J Cell Physiol 230:1729–1739

    Article  CAS  PubMed  Google Scholar 

  7. Wang J, Zhu H, Yang Z, Liu Z (2013) Antioxidative effects of hesperetin against lead acetate-induced oxidative stress in rats. Indian J Pharmacol 45:395–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Parhiz H, Roohbakhsh A, Soltani F, Rezaee R, Iranshahi M (2015) Antioxidant and anti-inflammatory properties of the citrus flavonoids hesperidin and hesperetin: an updated review of their molecular mechanisms and experimental models. Phytother Res 29:323–331

    Article  CAS  PubMed  Google Scholar 

  9. Yang HL, Chen SC, Senthil Kumar KJ, Yu KN, Lee Chao PD, Tsai SY, Hou YC, Hseu YC (2012) Antioxidant and anti-inflammatory potential of hesperetin metabolites obtained from hesperetin-administered rat serum: an ex vivo approach. J Agric Food Chem 60:522–532

    Article  CAS  PubMed  Google Scholar 

  10. Yang Z, Liu Y, Deng W, Dai J, Li F, Yuan Y, Wu Q, Zhou H, Bian Z, Tang Q (2014) Hesperetin attenuates mitochondria-dependent apoptosis in lipopolysaccharide-induced H9C2 cardiomyocytes. Mol Med Rep 9:1941–1946

    CAS  PubMed  Google Scholar 

  11. Hwang SL, Lin JA, Shih PH, Yeh CT, Yen GC (2012) Pro-cellular survival and neuroprotection of citrus flavonoid: the actions of hesperetin in PC12 cells. Food Funct 3:1082–1090

    Article  CAS  PubMed  Google Scholar 

  12. Hwang SL, Shih PH, Yen GC (2012) Neuroprotective effects of citrus flavonoids. J Agric Food Chem 60:877–885

    Article  CAS  PubMed  Google Scholar 

  13. Antunes MS, Goes AT, Boeira SP, Prigol M, Jesse CR (2014) Protective effect of hesperidin in a model of Parkinson’s disease induced by 6-hydroxydopamine in aged mice. Nutrition 30:1415–1422

    Article  CAS  PubMed  Google Scholar 

  14. Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates, 2nd edn. Academic Press, San Diego

    Google Scholar 

  15. Choi EJ, Ahn WS (2008) Neuroprotective effects of chronic hesperetin administration in mice. Arch Pharm Res 31:1457–1462

    Article  CAS  PubMed  Google Scholar 

  16. Roghani M, Niknam A, Jalali-Nadoushan MR, Kiasalari Z, Khalili M, Baluchnejadmojarad T (2010) Oral pelargonidin exerts dose-dependent neuroprotection in 6-hydroxydopamine rat model of hemi-parkinsonism. Brain Res Bull 82:279–283

    Article  CAS  PubMed  Google Scholar 

  17. Allbutt HN, Henderson JM (2007) Use of the narrow beam test in the rat, 6-hydroxydopamine model of Parkinson’s disease. J Neurosci Methods 159:195–202

    Article  PubMed  Google Scholar 

  18. Afshin-Majd S, Khalili M, Roghani M, Mehranmehr N, Baluchnejadmojarad T (2015) Carnosine exerts neuroprotective effect against 6-hydroxydopamine toxicity in hemiparkinsonian rat. Mol Neurobiol 51:1064–1070

    Article  CAS  PubMed  Google Scholar 

  19. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  20. Claiborne A (1985) Catalase activity. In: Greenwald RA (ed) CRC Handbook of methods for oxygen radical research. CRC, Boca Raton, pp 283–284

    Google Scholar 

  21. Sedlak J, Lindsay RH (1968) Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem 25:192–205

    Article  CAS  PubMed  Google Scholar 

  22. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Article  CAS  PubMed  Google Scholar 

  23. Morroni F, Tarozzi A, Sita G, Bolondi C, Zolezzi Moraga JM, Cantelli-Forti G, Hrelia P (2013) Neuroprotective effect of sulforaphane in 6-hydroxydopamine-lesioned mouse model of Parkinson’s disease. Neurotoxicology 36:63–71

    Article  CAS  PubMed  Google Scholar 

  24. Zare K, Eidi A, Roghani M, Rohani AH (2015) The neuroprotective potential of sinapic acid in the 6-hydroxydopamine-induced hemi-parkinsonian rat. Metab Brain Dis 30:205–213

    Article  CAS  PubMed  Google Scholar 

  25. Healy-Stoffel M, Omar Ahmad S, Stanford JA, Levant B (2014) Differential effects of intrastriatal 6-hydroxydopamine on cell number and morphology in midbrain dopaminergic subregions of the rat. Brain Res 1574:113–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Schober A (2004) Classic toxin-induced animal models of Parkinson’s disease: 6-OHDA and MPTP. Cell Tissue Res 318:215–224

    Article  PubMed  Google Scholar 

  27. Schwarting RK, Huston JP (1997) Behavioral and neurochemical dynamics of neurotoxic meso-striatal dopamine lesions. Neurotoxicology 18:689–708

    CAS  PubMed  Google Scholar 

  28. Rainey-Smith S, Schroetke LW, Bahia P, Fahmi A, Skilton R, Spencer JP, Rice-Evans C, Rattray M, Williams RJ (2008) Neuroprotective effects of hesperetin in mouse primary neurones are independent of CREB activation. Neurosci Lett 438:29–33

    Article  CAS  PubMed  Google Scholar 

  29. Hwang SL, Yen GC (2011) Effect of hesperetin against oxidative stress via ER- and TrkA-mediated actions in PC12 cells. J Agric Food Chem 59:5779–5785

    Article  CAS  PubMed  Google Scholar 

  30. Jalali-Nadoushan M, Roghani M (2013) Alpha-lipoic acid protects against 6-hydroxydopamine-induced neurotoxicity in a rat model of hemi-parkinsonism. Brain Res 1505:68–74

    Article  CAS  PubMed  Google Scholar 

  31. Baranyi M, Milusheva E, Vizi ES, Sperlagh B (2006) Chromatographic analysis of dopamine metabolism in a Parkinsonian model. J Chromatogr A 1120:13–20

    Article  CAS  PubMed  Google Scholar 

  32. Und Halbach OVB, Schober A, Krieglstein K (2004) Genes, proteins, and neurotoxins involved in Parkinson’s disease. Prog Neurobiol 73:151–177

    Article  Google Scholar 

  33. Chen S, Le W (2006) Neuroprotective therapy in Parkinson disease. Am J Ther 13:445–457

    Article  PubMed  Google Scholar 

  34. Kumar B, Gupta SK, Srinivasan BP, Nag TC, Srivastava S, Saxena R, Jha KA (2013) Hesperetin rescues retinal oxidative stress, neuroinflammation and apoptosis in diabetic rats. Microvasc Res 87:65–74

    Article  CAS  PubMed  Google Scholar 

  35. Zhou F, Wu JY, Sun XL, Yao HH, Ding JH, Hu G (2007) Iptakalim alleviates rotenone-induced degeneration of dopaminergic neurons through inhibiting microglia-mediated neuroinflammation. Neuropsychopharmacology 32:2570–2580

    Article  CAS  PubMed  Google Scholar 

  36. Miklossy J, Doudet DD, Schwab C, Yu S, McGeer EG, McGeer PL (2006) Role of ICAM-1 in persisting inflammation in Parkinson disease and MPTP monkeys. Exp Neurol 197:275–283

    Article  CAS  PubMed  Google Scholar 

  37. Sriram K, O’Callaghan JP (2007) Divergent roles for tumor necrosis factor-alpha in the brain. J Neuroimmune Pharmacol 2:140–153

    Article  PubMed  Google Scholar 

  38. Hwang CK, Chun HS (2012) Isoliquiritigenin isolated from licorice Glycyrrhiza uralensis prevents 6-hydroxydopamine-induced apoptosis in dopaminergic neurons. Biosci Biotechnol Biochem 76:536–543

    Article  CAS  PubMed  Google Scholar 

  39. Deng W, Jiang D, Fang Y, Zhou H, Cheng Z, Lin Y, Zhang R, Zhang J, Pu P, Liu Y, Bian Z, Tang Q (2013) Hesperetin protects against cardiac remodelling induced by pressure overload in mice. J Mol Histol 44:575–585

    Article  CAS  PubMed  Google Scholar 

  40. Trivedi PP, Kushwaha S, Tripathi DN, Jena GB (2011) Cardioprotective effects of hesperetin against doxorubicin-induced oxidative stress and DNA damage in rat. Cardiovasc Toxicol 11:215–225

    Article  CAS  PubMed  Google Scholar 

  41. Calou I, Bandeira MA, Aguiar-Galvao W, Cerqueira G, Siqueira R, Neves KR, Brito GA, Viana G (2014) Neuroprotective properties of a standardized extract from Myracrodruon urundeuva Fr. All. (Aroeira-Do-Sertao), as evaluated by a Parkinson’s disease model in rats. Parkinsons Dis 2014:519615

    PubMed  PubMed Central  Google Scholar 

  42. Roohbakhsh A, Parhiz H, Soltani F, Rezaee R, Iranshahi M (2014) Neuropharmacological properties and pharmacokinetics of the citrus flavonoids hesperidin and hesperetin—a mini-review. Life Sci 113:1–6

    Article  CAS  PubMed  Google Scholar 

  43. Cho J (2006) Antioxidant and neuroprotective effects of hesperidin and its aglycone hesperetin. Arch Pharm Res 29:699–706

    Article  CAS  PubMed  Google Scholar 

  44. Zbarsky V, Datla KP, Parkar S, Rai DK, Aruoma OI, Dexter DT (2005) Neuroprotective properties of the natural phenolic antioxidants curcumin and naringenin but not quercetin and fisetin in a 6-OHDA model of Parkinson’s disease. Free Radic Res 39:1119–1125

    Article  CAS  PubMed  Google Scholar 

  45. Bagheri M, Joghataei MT, Mohseni S, Roghani M (2011) Genistein ameliorates learning and memory deficits in amyloid beta(1–40) rat model of Alzheimer’s disease. Neurobiol Learn Mem 95:270–276

    Article  CAS  PubMed  Google Scholar 

  46. Yin SM, Zhao D, Yu DQ, Li SL, An D, Peng Y, Xu H, Sun YP, Wang DM, Zhao J, Zhang WQ (2014) Neuroprotection by scorpion venom heat resistant peptide in 6-hydroxydopamine rat model of early-stage Parkinson’s disease. Acta Physiol Sin 66:658–666

    CAS  Google Scholar 

  47. Park SE, Song KI, Suh JK, Hwang D, Youn I (2015) A time-course study of behavioral and electrophysiological characteristics in a mouse model of different stages of Parkinson’s disease using 6-hydroxydopamine. Behav Brain Res 284:153–157

    Article  CAS  PubMed  Google Scholar 

  48. Yuan H, Liang LW, Chen ZJ, Ji HR, Wang MK, Zhang HY, Li C, Xu JY (2006) R-apomorphine protects against 6-hydroxydopamine-induced nigrostriatal damage in rat. Neurosci Bull 22:331–338

    CAS  PubMed  Google Scholar 

  49. Richter F, Hamann M, Richter A (2008) Moderate degeneration of nigral neurons after repeated but not after single intrastriatal injections of low doses of 6-hydroxydopamine in mice. Brain Res 1188:148–156

    Article  CAS  PubMed  Google Scholar 

  50. Roghani M, Behzadi G, Baluchnejadmojarad T (2002) Efficacy of elevated body swing test in the early model of Parkinson’s disease in rat. Physiol Behav 76:507–510

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research study was financially supported by a grant from Neurophysiology Research Center affiliated to Shahed University (Tehran, Iran) in 2013.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zahra Kiasalari or Mehrdad Roghani.

Ethics declarations

Conflict interest

The authors hereby report that there is no declaration of interest and they are responsible for the content of the paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiasalari, Z., Khalili, M., Baluchnejadmojarad, T. et al. Protective Effect of Oral Hesperetin Against Unilateral Striatal 6-Hydroxydopamine Damage in the Rat. Neurochem Res 41, 1065–1072 (2016). https://doi.org/10.1007/s11064-015-1796-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-015-1796-6

Keywords

Navigation