Skip to main content

Advertisement

Log in

Experimental Post-traumatic Stress Disorder Decreases Astrocyte Density and Changes Astrocytic Polarity in the CA1 Hippocampus of Male Rats

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Post-traumatic stress disorder (PTSD) is a psychiatric condition resulting from exposure to a traumatic event. It is characterized by several debilitating symptoms including re-experiencing the past trauma, avoidance behavior, increased fear, and hyperarousal. Key roles in the neuropathology of PTSD and its symptomatology have been attributed to the hippocampus and amygdala. These regions are involved in explicit memory processes and context encoding during fear conditioning. The aim of our study was to investigate whether PTSD is capable of altering the morphology, density and expression of glial fibrillary acidic protein (GFAP) in astrocytes from the CA1 region of the hippocampus and the medial amygdala and correlate the data obtained with the orientation index of the polarity of astrocytes. Thirty male rats were divided in two groups: control (n = 15) and PTSD (n = 15). The inescapable shock protocol, in which the animals are exposed to a single episode of footshock, was used to induce PTSD. Our results show that, in the hippocampus, PTSD is capable of decreasing the density of GFAP+ astrocytes as well as altering astrocytic morphology, as shown by the reductions observed in the total number of primary processes, in the number of primary processes in the lateral quadrants, and the degree of branching in the lateral quadrants. The analysis of the orientation index indicates that PTSD alters the polarity of hippocampal astrocytes. No alterations were observed in the amygdala astrocytes. Therefore, this study demonstrates notable changes in hippocampal astrocytes, supporting the concept that these cells play an important role in PTSD symptomatology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lapiz-Bluhm MD, Peterson AL (2014) Neurobehavioral mechanism of traumatic stress in post-traumatic stress disorder. Curr Top Behav Neurosci 18:161–190

    Article  CAS  PubMed  Google Scholar 

  2. Liberzon I, Khan S, Young EA (2005) Animal models of posttraumatic stress disorder. Handb Stress Brain 15:231–250

    Google Scholar 

  3. American PA (2013) Diagnostic and statistical manual of mental disorders: DSM-5, 5th edn. APA, Washington

    Google Scholar 

  4. Wilson CB, McLaughlin LD, Ebenezer PJ, Nair AR, Francis J (2014) Valproic acid effects in the hippocampus and prefrontal cortex in an animal model of post-traumatic stress disorder. Behav Brain Res 268:72–80

    Article  CAS  PubMed  Google Scholar 

  5. Harris RBS, Palmondon J, Leshin S, Flatt WP, Richard D (2006) Chronic disruption of body weight but not of stress peptides or receptors in rats exposed to repeated restraint stress. Horm Behav 49:615–625

    Article  CAS  PubMed  Google Scholar 

  6. Harris RBS, Mitchell TD, Simpson J, Redmann SM Jr, Youngblood BD, Ryan DH (2002) Weight loss in rats exposed to repeated acute restraint stress is independent of energy or leptin status. Am J Physiol Regul Integr Comp Physiol 282:77–88

    Google Scholar 

  7. Harris RBS, Zhou J, Youngblood BD, Rybkin II, Smagin GN, Ryan DH (1990) Effect of repeated stress on body weight and body composition of rats fed low- and high-fat diets. Am J Physiol 258:329–337

    Google Scholar 

  8. Barone FC, Deegan JF, Price WJ, Fowler PJ, Fondacaro JD, Ormsbee HS 3rd (1998) Cold-restraint stress increases rat fecal pellet output and colonic transit. Am J Physiol 275:1928–1938

    Google Scholar 

  9. Liu Y, Luo H, Liang C, Xia H, Xu W, Chen J, Chen M (2013) Actions of hydrogen sulfide and ATP-sensitive potassium channels on colonic hypermotility in a rat model of chronic stress. PLoS One 8(2):e55853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Diehl LA, Silveira PP, Leite MC, Crema LM, Portella AK, Billodre MN, Nunes E, Henriques TP, Fidelix-da-Silva LB, Heis MD, Gonçalves CA, Quillfeldt JA, Dalmaz C (2007) Long lasting sex-specific effects upon behavior and S100b levels after maternal separation and exposure to a model of post-traumatic stress disorder in rats. Brain Res 1144:107–116

    Article  CAS  PubMed  Google Scholar 

  11. Li S, Murakami Y, Wang M, Maeda K, Matsumoto K (2006) The effects of chronic valproate and diazepam in a mouse model of posttraumatic stress disorder. Pharmacol Biochem Behav 85:324–331

    Article  CAS  PubMed  Google Scholar 

  12. Siegmund A, Wotjak CT (2007) A mouse model of posttraumatic stress disorder that distinguishes between conditioned and sensitised fear. J Psychiatr Res 41:848–860

    Article  PubMed  Google Scholar 

  13. Yu H, Watt H, Kesavan C, Johnson PJ, Wergedal JE, Mohan S (2012) Lasting consequences of traumatic events on behavioral and skeletal parameters in a mouse model for post-traumatic stress disorder (PTSD). PLoS One 7:e42684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ryoke R, Yamada K, Ichitani Y (2014) Long-term effects of traumatic stress on subsequent contextual fear conditioning in rats. Physiol Behav 129:30–35

    Article  CAS  PubMed  Google Scholar 

  15. Juven-Wetzler A, Cohen H, Kaplan Z, Kohen A, Porat O, Zohar J (2014) Immediate ketamine treatment does not prevent posttraumatic stress responses in an animal model for PTSD. Eur Neuropsychopharmacol 24:469–479

    Article  CAS  PubMed  Google Scholar 

  16. McEwen BS (2008) Central effects of stress hormones in health and disease: understanding the protective and damaging effects of stress and stress mediators. Eur J Pharmacol 583:174–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sapolsky RM (2003) Stress and plasticity in the limbic system. Neurochem Res 28:1735–1742

    Article  CAS  PubMed  Google Scholar 

  18. Moore H, Rose HJ, Grace AA (2001) Chronic cold stress reduces the spontaneous activity of ventral tegmental dopamine neurons. Neuropsychopharmacology 24:410–419

    Article  CAS  PubMed  Google Scholar 

  19. Corral-Frias NS, Lahood RP, Edelman-Vogelsang KE, French ED, Fellous JM (2013) Involvement of the ventral tegmental area in a rodent model of post-traumatic stress disorder. Neuropsychopharmacology 38:350–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bingham BC, Sheela Rani CS, Frazer A, Strong R, Morilak DA (2013) Exogenous prenatal corticosterone exposure mimics the effects of prenatal stress on adult brain stress response systems and fear extinction behavior. Psychoneuroendocrinology 38:2746–2757

    Article  CAS  PubMed  Google Scholar 

  21. Rauch SL, van der Kolk BA, Fisler RE, Alpert NM, Orr SP, Savage CR, Fischman AJ, Jenike MA, Pitman RK (1996) A symptom provocation study of posttraumatic stress disorder using positron emission tomography and script-driven imagery. Arch Gen Psychiatry 53:380–387

    Article  CAS  PubMed  Google Scholar 

  22. Shin LM, McNally RJ, Kosslyn SM, Thompson WL, Rauch SL, Alpert NM, Metzger LJ, Lasko NB, Orr SP, Pitman RK (1999) Regional cerebral blood flow during script-driven imagery in childhood sexual abuse-related PTSD: a PET investigation. Am J Psychiatry 156:575–584

    CAS  PubMed  Google Scholar 

  23. Huang ZL, Liu R, Bai XY, Zhao G, Song JK, Wu S, Du GH (2014) Protective effects of the novel adenosine derivative WS0701 in a mouse model of posttraumatic stress disorder. Acta Pharmacol Sin 35:24–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Etienne-Manneville S (2008) Polarity proteins in glial cell functions. Curr Opin Neurobiol 18:488–494

    Article  CAS  PubMed  Google Scholar 

  25. Anders S, Minge D, Griemsmann S, Herde MK, Steinhäuser C, Henneberger C (2014) Spatial properties of astrocyte gap junction coupling in the rat hippocampus. Philos Trans R Soc Lond B 369:20130600

    Article  Google Scholar 

  26. Derouiche A, Pannicke T, Haseleu J, Blaess S, Grosche J, Reichenbach A (2012) Beyond polarity: functional membrane domains in astrocytes and müller cells. Neurochem Res 37:2513–2523

    Article  CAS  PubMed  Google Scholar 

  27. Lavi E, Wang Q, Stieber A, Gonatas NK (1994) Polarity of processes with Golgi apparatus in a subpopulation of type I astrocytes. Brain Res 647:273–285

    Article  CAS  PubMed  Google Scholar 

  28. Steiner E, Enzmann GU, Lin S, Ghavampour S, Hannocks MJ, Zuber B, Rüegg MA, Sorokin L, Engelhardt B (2012) Loss of astrocyte polarization upon transient focal brain ischemia as a possible mechanism to counteract early edema formation. Glia 60:1646–1659

    Article  PubMed  Google Scholar 

  29. Wolburg H, Noell S, Wolburg-Buchholz K, Mack A, Fallier-Becker P (2009) Agrin, aquaporin-4, and astrocyte polarity as an important feature of the blood-brain barrier. Neuroscientist 15:180–193

    Article  CAS  PubMed  Google Scholar 

  30. Yang J, Lunde LK, Nuntagij P, Oguchi T, Camassa LM, Nilsson LN, Lannfelt L, Xu Y, Amiry-Moghaddam M, Ottersen OP, Torp R (2011) Loss of astrocyte polarization in the tg-ArcSwe mouse model of Alzheimer’s disease. J Alzheimers Dis 27:711–722

    CAS  PubMed  Google Scholar 

  31. Diehl LA, Alvares LO, Noschang C, Engelke D, Andreazza AC, Gonçalves CA, Quillfeldt JA, Dalmaz C (2012) Long-lasting effects of maternal separation on an animal model of post-traumatic stress disorder: effects on memory and hippocampal oxidative stress. Neurochem Res 37:700–707

    Article  CAS  PubMed  Google Scholar 

  32. Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates. Academic Press, San Diego

    Google Scholar 

  33. Saur L, Baptista PP, de Senna PN, Paim MF, Nascimento PD, Ilha J, Bagatini PB, Achaval M, Xavier LL (2014) Physical exercise increases GFAP expression and induces morphological changes in hippocampal astrocytes. Brain Struct Funct 219:293–302

    Article  CAS  PubMed  Google Scholar 

  34. Viola GG, Rodrigues L, Américo JC, Hansel G, Vargas RS, Biasibetti R, Swarowsky A, Gonçalves CA, Xavier LL, Achaval M, Souza DO, Amaral OB (2009) Morphological changes in hippocampal astrocytes induced by environmental enrichment in mice. Brain Res 1274:47–54

    Article  CAS  PubMed  Google Scholar 

  35. Mestriner RG, Pagnussat AS, Boisserand LS, Valentim L, Netto CA (2011) Skilled reaching training promotes astroglial changes and facilitated sensorimotor recovery after collagenase-induced intracerebral hemorrhage. Exp Neurol 227:53–61

    Article  CAS  PubMed  Google Scholar 

  36. Mestriner RG, Saur L, Bagatini PB, Baptista PP, Vaz SP, Ferreira K, Machado SA, Xavier LL, Netto CA (2015) Astrocyte morphology after ischemic and hemorrhagic experimental stroke has no influence on the different recovery patterns. Behav Brain Res 278:257–261

    Article  PubMed  Google Scholar 

  37. Xavier LL, Viola GG, Ferraz AC, Da Cunha C, Deonizio JM, Netto CA, Achaval M (2005) A simple and fast densitometric method for the analysis of tyrosine hydroxylase immunoreactivity in the substantia nigra pars compacta and in the ventral tegmental area. Brain Res Brain Res Protoc 16:58–64

    Article  CAS  PubMed  Google Scholar 

  38. Sholl DA (1953) Dendritic organization in the neurons of the visual and motor cortices of the cat. J Anat 87:387–406

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Nixdorf-Bergweiler BE, Albrecht B, Heinemann U (1994) Developmental changes in the number, size, and orientation of GFAP-positive cells in the CA1 region of rat hippocampus. Glia 12:180–195

    Article  CAS  PubMed  Google Scholar 

  40. Faul F, Erdfelder E, Lang A, Buchner A (2007) GnPower3:a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39:177–191

    Article  Google Scholar 

  41. Zhang W, Hetzel A, Shah B, Atchley D, Blume SR, Padival MA, Rosenkranz JA (2014) Greater physiological and behavioral effects of interrupted stress pattern compared to daily restraint stress in rats. PLoS One 9:e102247

    Article  PubMed  PubMed Central  Google Scholar 

  42. Jiang X, Zhang ZJ, Zhang S, Gamble EH, Jia M, Ursano RJ, Li H (2011) 5-HT2A receptor antagonism by MDL 11,939 during inescapable stress prevents subsequent exaggeration of acoustic startle response and reduced body weight in rats. J Psychopharmacol 25:289–297

    Article  PubMed  Google Scholar 

  43. Kassem MS, Lagopoulos J, Stait-Gardner T, Price WS, Chohan TW, Arnold JC, Hatton SN, Bennett MR (2013) Stress-induced grey matter loss determined by MRI is primarily due to loss of dendrites and their synapses. Mol Neurobiol 47:645–661

    Article  CAS  PubMed  Google Scholar 

  44. Valles A, Marti O, Garcia A, Armario A (2000) Single exposure to stressors causes long-lasting, stress-dependent reduction of food intake in rats. Am J Physiol Regul Integr Comp Physiol 279:1138–1144

    Google Scholar 

  45. Roth MK, Bingham B, Shah A, Joshi A, Frazer A, Strong R, Morilak DA (2012) Effects of chronic plus acute prolonged stress on measures of coping style, anxiety, and evoked HPA-axis reactivity. Neuropharmacology 63:1118–1126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ottenweller JE, Servatius RJ, Natelson BH (1994) Repeated stress persistently elevates morning, but not evening, plasma corticosterone levels in male rats. Physiol Behav 55:337–340

    Article  CAS  PubMed  Google Scholar 

  47. Jia M, Meng F, Smerin SE, Xing G, Zhang L, Su DM, Benedek D, Ursano R, Su YA, Li H (2012) Biomarkers in an animal model for revealing neural, hematologic, and behavioral correlates of PTSD. J Vis Exp 68:e3361

    Google Scholar 

  48. Meerlo P, Overkamp GJ, Daan S, Van Den Hoofdakker RH, Koolhaas JM (1996) Changes in behaviour and body weight following a single or double social defeat in rats. Stress 1:21–32

    Article  PubMed  Google Scholar 

  49. Zoladz PR, Conrad CD, Fleshner M, Diamond DM (2008) Acute episodes of predator exposure in conjunction with chronic social instability as an animal model of post-traumatic stress disorder. Stress 11:259–281

    Article  PubMed  PubMed Central  Google Scholar 

  50. Tulogdi A, Sörös P, Tóth M, Nagy R, Biró L, Aliczki M, Klausz B, Mikics E, Haller J (2012) Temporal changes in c-Fos activation patterns induced by conditioned fear. Brain Res Bull 88:359–370

    Article  CAS  PubMed  Google Scholar 

  51. Yu H, Watt H, Kesavan C, Johnson PJ, Wergedal JE, Mohan S (2012) Lasting consequences of traumatic events on behavioral and skeletal parameters in a mouse model for post-traumatic stress disorder (PTSD). PLoS One 7:e42684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Juven-Wetzler A, Cohen H, Kaplan Z, Kohen A, Porat O, Zohar J (2014) Immediate ketamine treatment does not prevent posttraumatic stress responses in an animal model for PTSD. Eur Neuropsychopharmacol 24:469–479

    Article  CAS  PubMed  Google Scholar 

  53. Campos AC, Piorino EM, Ferreira FR, Guimarães FS (2013) Increased nitric oxide-mediated neurotransmission in the medial prefrontal cortex is associated with the long lasting anxiogenic-like effect of predator exposure. Behav Brain Res 256:391–397

    Article  CAS  PubMed  Google Scholar 

  54. Mirshekar M, Abrari K, Goudarzi I, Rashidy-Pour A (2013) Systemic administrations of β-estradiol alleviate both conditioned and sensitized fear responses in an ovariectomized rat model of post-traumatic stress disorder. Neurobiol Learn Mem 102:12–19

    Article  CAS  PubMed  Google Scholar 

  55. Wang W, Liu Y, Zheng H, Wang HN, Jin X, Chen YC, Zheng LN, Luo XX, Tan QR (2008) A modified single-prolonged stress model for post-traumatic stress disorder. Neurosci Lett 441:237–241

    Article  CAS  PubMed  Google Scholar 

  56. Ryoke R, Yamada K, Ichitani Y (2014) Long-term effects of traumatic stress on subsequent contextual fear conditioning in rats. Physiol Behav 129:30–35

    Article  CAS  PubMed  Google Scholar 

  57. Hawley WR, Grissom EM, Belkin MN, James TF, Dohanich GP (2013) Decreased sexual motivation and heightened anxiety in male Long-Evans rats are correlated with the memory for a traumatic event. Arch Sex Behav 42:659–668

    Article  PubMed  Google Scholar 

  58. Cui H, Sakamoto H, Higashi S, Kawata M (2008) Effects of single-prolonged stress on neurons and their afferent inputs in the amygdala. Neuroscience 152:703–712

  59. Bremner JD, Vythilingam M, Vermetten E, Southwick SM, McGlashan T, Staib LH, Soufer R, Charney DS (2003) Neural correlates of declarative memory for emotionally valenced words in women with posttraumatic stress disorder related to early childhood sexual abuse. Biol Psychiatry 53:879–889

    Article  PubMed  Google Scholar 

  60. Shin LM, Shin PS, Heckers S, Krangel TS, Macklin ML, Orr SP, Lasko N, Segal E, Makris N, Richert K, Levering J, Schacter DL, Alpert NM, Fischman AJ, Pitman RK, Rauch SL (2004) Hippocampal function in posttraumatic stress disorder. Hippocampus 14:292–300

    Article  PubMed  Google Scholar 

  61. Thomaes K, Dorrepaal E, Draijer NP, de Ruiter MB, Elzinga BM, van Balkom AJ, Smoor PL, Smit J, Veltman DJ (2009) Increased activation of the left hippocampus region in Complex PTSD during encoding and recognition of emotional words: a pilot study. Psychiatry Res 171:44–53

    Article  PubMed  Google Scholar 

  62. Brohawn KH, Offringa R, Pfaff DL, Hughes KC, Shin LM (2010) The neural correlates of emotional memory in posttraumatic stress disorder. Biol Psychiatry 68:1023–1030

    Article  PubMed  Google Scholar 

  63. Woolley CS, Gould E, McEwen BS (1990) Exposure to excess glucocorticoids alters dendritic morphology of adult hippocampal pyramidal neurons. Brain Res 531:225–231

    Article  CAS  PubMed  Google Scholar 

  64. Watanabe Y, Gould E, McEwen BS (1992) Stress induces atrophy of apical dendrites of hippocampal CA3 pyramidal neurons. Brain Res 588:341–345

    Article  CAS  PubMed  Google Scholar 

  65. Magariños AM, Verdugo JM, McEwen BS (1997) Chronic stress alters synaptic terminal structure in hippocampus. Proc Natl Acad Sci USA 94:14002–14008

    Article  PubMed  PubMed Central  Google Scholar 

  66. Uno H, Lohmiller L, Thieme C, Kemnitz JW, Engle MJ, Roecker EB, Farrell PM (1990) Brain damage induced by prenatal exposure to dexamethasone in fetal rhesus macaques. I. Hippocampus. Brain Res Dev Brain Res 53:157–167

    Article  CAS  PubMed  Google Scholar 

  67. Gould E, Tanapat P, McEwen BS, Flügge G, Fuchs E (1998) Proliferation of granule cell precursors in the dentate gyrus of adult monkeys is diminished by stress. Proc Natl Acad Sci USA 95:3168–3171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cohen H, Kozlovsky N, Matar MA, Zohar J, Kaplan Z (2014) Distinctive hippocampal and amygdalar cytoarchitectural changes underlie specific patterns of behavioral disruption following stress exposure in an animal model of PTSD. Eur Neuropsychopharmacol 24:1925–1944

    Article  CAS  PubMed  Google Scholar 

  69. Cui H, Sakamoto H, Higashi S, Kawata M (2008) Effects of single-prolonged stress on neurons and their afferent inputs in the amygdala. Neuroscience 152:703–712

    Article  CAS  PubMed  Google Scholar 

  70. Bennur S, Shankaranarayana Rao BS, Pawlak R, Strickland S, McEwen BS, Chattarji S (2007) Stress-induced spine loss in the medial amygdala is mediated by tissue-plasminogen activator. Neuroscience 144:8–16

    Article  CAS  PubMed  Google Scholar 

  71. Lucassen PJ, Pruessner J, Sousa N, Almeida OF, Van Dam AM, Rajkowska G, Swaab DF, Czéh B (2014) Neuropathology of stress. Acta Neuropathol 127:109–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Marcuzzo S, Dall’oglio A, Ribeiro MF, Achaval M, Rasia-Filho AA (2007) Dendritic spines in the posterodorsal medial amygdala after restraint stress and ageing in rats. Neurosci Lett 424:16–21

    Article  CAS  PubMed  Google Scholar 

  73. Maroun M, Ioannides PJ, Bergman KL, Kavushansky A, Holmes A, Wellman CL (2013) Fear extinction deficits following acute stress associate with increased spine density and dendritic retraction in basolateral amygdala neurons. Eur J Neurosci 38:2611–2620

    Article  PubMed  PubMed Central  Google Scholar 

  74. Kitayama N, Vaccarino V, Kutner M, Weiss P, Bremner JD (2005) Magnetic resonance imaging (MRI) measurement of hippocampal volume in posttraumatic stress disorder: a meta-analysis. J Affect Disord 88:79–86

    Article  PubMed  Google Scholar 

  75. Lindauer RJ, Olff M, van Meijel EP, Carlier IV, Gersons BP (2006) Cortisol, learning, memory, and attention in relation to smaller hippocampal volume in police officers with posttraumatic stress disorder. Biol Psychiatry 59:171–177

    Article  CAS  PubMed  Google Scholar 

  76. Bremner JD, Elzinga B, Schmahl C, Vermetten E (2008) Structural and functional plasticity of the human brain in posttraumatic stress disorder. Prog Brain Res 167:171–186

    Article  PubMed  PubMed Central  Google Scholar 

  77. Bremner JD, Randall P, Scott TM, Bronen RA, Seibyl JP, Southwick SM, Delaney RC, McCarthy G, Charney DS, Innis RB (1995) MRI-based measurement of hippocampal volume in patients with combat-related posttraumatic stress disorder. Am J Psychiatry 152:973–981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Shin LM, Shin PS, Heckers S, Krangel TS, Macklin ML, Orr SP, Lasko N, Segal E, Makris N, Richert K, Levering J, Schacter DL, Alpert NM, Fischman AJ, Pitman RK, Rauch SL (2004) Hippocampal function in posttraumatic stress disorder. Hippocampus 14:292–300

    Article  PubMed  Google Scholar 

  79. Czéh B, Simon M, Schmelting B, Hiemke C, Fuchs E (2006) Astroglial plasticity in the hippocampus is affected by chronic psychosocial stress and concomitant fluoxetine treatment. Neuropsychopharmacology 31:1616–1626

    Article  PubMed  Google Scholar 

  80. Xia L, Zhai M, Wang L, Miao D, Zhu X, Wang W (2013) FGF2 blocks PTSD symptoms via an astrocyte-based mechanism. Behav Brain Res 256:472–480

    Article  CAS  PubMed  Google Scholar 

  81. Friedman WJ, Black IB, Kaplan DR (1998) Distribution of the neurotrophins brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4/5 in the postnatal rat brain: an immunocytochemical study. Neuroscience 84:101–114

    Article  CAS  PubMed  Google Scholar 

  82. Althaus HH, Richter-Landsberg C (2000) Glial cells as targets and producers of neurotrophins. Int Rev Cytol 197:203–277

    Article  CAS  PubMed  Google Scholar 

  83. Cohen H, Kozlovsky N, Matar MA, Zohar J, Kaplan Z (2014) Distinctive hippocampal and amygdalar cytoarchitectural changes underlie specific patterns of behavioral disruption following stress exposure in an animal model of PTSD. Eur Neuropsychopharmacol 24:1925–1944

    Article  CAS  PubMed  Google Scholar 

  84. Carter RN, Pinnock SB, Herbert J (2004) Does the amygdala modulate adaptation to repeated stress? Neuroscience 126:9–19

    Article  CAS  PubMed  Google Scholar 

  85. Davis M (2006) Neural systems involved in fear and anxiety measured with fear-potentiated startle. Am Psychol 61:741–756

    Article  PubMed  Google Scholar 

  86. Ebner K, Rupniak NM, Saria A, Singewald N (2004) Substance P in the medial amygdala: emotional stress-sensitive release and modulation of anxietyrelated behavior in rats. Proc Natl Acad Sci USA 101:4280–4285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Roozendaal B, McGaugh JL (1996) Amygdaloid nuclei lesions differentially affect glucocorticoid-induced memory enhancement in an inhibitory avoidance task. Neurobiol Learn Mem 65:1–8

    Article  CAS  PubMed  Google Scholar 

  88. Bremner JD, Randall P, Vermetten E, Staib L, Bronen RA, Mazure C, Capelli S, McCarthy G, Innis RB, Charney DS (1997) Magnetic resonance imaging-based measurement of hippocampal volume in posttraumatic stress disorder related to childhood physical and sexual abuse—a preliminary report. Biol Psychiatry 41:23–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lindauer RJ, Vlieger EJ, Jalink M, Olff M, Carlier IV, Majoie CB, den Heeten GJ, Gersons BP (2004) Smaller hippocampal volume in Dutch police officers with posttraumatic stress disorder. Biol Psychiatry 56:356–363

    Article  PubMed  Google Scholar 

  90. Lindauer RJ, Vlieger EJ, Jalink M, Olff M, Carlier IV, Majoie CB, Den Heeten GJ, Gersons BP (2005) Effects of psychotherapy on hippocampal volume in out-patients with post-traumatic stress disorder: a MRI investigation. Psychol Med 35:1421–1431

    Article  PubMed  Google Scholar 

  91. Schmahl C, Berne K, Krause A, Kleindienst N, Valerius G, Vermetten E, Bohus M (2009) Hippocampus and amygdala volumes in patients with borderline personality disorder with or without posttraumatic stress disorder. J Psychiatry Neurosci 34:289–295

    PubMed  PubMed Central  Google Scholar 

  92. Weniger G, Lange C, Sachsse U, Irle E (2008) Amygdala and hippocampal volumes and cognition in adult survivors of childhood abuse with dissociative disorders. Acta Psychiatr Scand 118:281–290

    Article  CAS  PubMed  Google Scholar 

  93. Morey RA, Gold AL, LaBar KS, Beall SK, Brown VM, Haswell CC, Nasser JD, Wagner HR, McCarthy G (2012) Amygdala volume changes in posttraumatic stress disorder in a large case-controlled veterans group. Arch Gen Psychiatry 69:1169–1178

    Article  PubMed  PubMed Central  Google Scholar 

  94. Kuo JR, Kaloupek DG, Woodward SH (2012) Amygdala volume in combat-exposed veterans with and without posttraumatic stress disorder: a cross-sectional study. Arch Gen Psychiatry 69:1080–1086

    Article  PubMed  Google Scholar 

  95. Tynan RJ, Beynon SB, Hinwood M, Johnson SJ, Nilsson M, Woods JJ, Walker FR (2013) Chronic stress-induced disruption of the astrocyte network is driven by structural atrophy and not loss of astrocytes. Acta Neuropathol 126:75–91

    Article  CAS  PubMed  Google Scholar 

  96. Allen NJ, Barres BA (2005) Signaling between glia and neurons: focus on synaptic plasticity. Curr Opin Neurobiol 15:542–548

    Article  CAS  PubMed  Google Scholar 

  97. Bushong EA, Martone ME, Jones YZ, Ellisman MH (2002) Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J Neurosci 22:183–192

    CAS  PubMed  Google Scholar 

  98. Fennrich S, Ray D, Nau H, Schlosshauer B (1998) Radial astrocytes: toxic effects induced by antiepileptic drug in the developing rat hippocampus in vitro. Eur J Cell Biol 77:142–150

    Article  CAS  PubMed  Google Scholar 

  99. Andersen P, Morris R, Amaral D, Bliss T, O’Keefe J (2007) The hippocampus book. Oxford University Press, New York

    Google Scholar 

Download references

Acknowledgments

This research was supported by the Brazilian funding agencies: Conselho Nacional de Pesquisa e Desenvolvimento (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Fundação de Apoio à Pesquisa do Estado do Rio Grande do Sul (FAPERGS). Lisiani Saur was supported by a Doctorate scholarship from CAPES. Dr. Léder Leal Xavier is a CNPq investigator.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Léder Leal Xavier.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saur, L., Baptista, P.P.A., Bagatini, P.B. et al. Experimental Post-traumatic Stress Disorder Decreases Astrocyte Density and Changes Astrocytic Polarity in the CA1 Hippocampus of Male Rats. Neurochem Res 41, 892–904 (2016). https://doi.org/10.1007/s11064-015-1770-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-015-1770-3

Keywords

Navigation