Skip to main content

Advertisement

Log in

Crosstalk of Signaling and Metabolism Mediated by the NAD+/NADH Redox State in Brain Cells

  • Overview
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The energy metabolism of the brain has to be precisely adjusted to activity to cope with the organ’s energy demand, implying that signaling regulates metabolism and metabolic states feedback to signaling. The NAD+/NADH redox state constitutes a metabolic node well suited for integration of metabolic and signaling events. It is affected by flux through metabolic pathways within a cell, but also by the metabolic state of neighboring cells, for example by lactate transferred between cells. Furthermore, signaling events both in neurons and astrocytes have been reported to change the NAD+/NADH redox state. Vice versa, a number of signaling events like astroglial Ca2+ signals, neuronal NMDA-receptors as well as the activity of transcription factors are modulated by the NAD+/NADH redox state. In this short review, this bidirectional interdependence of signaling and metabolism involving the NAD+/NADH redox state as well as its potential relevance for the physiology of the brain and the whole organism in respect to blood glucose regulation and body weight control are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Hirrlinger J, Dringen R (2010) The cytosolic redox state of astrocytes: maintenance, regulation and functional implications for metabolite trafficking. Brain Res Rev 63:177–188

    Article  CAS  PubMed  Google Scholar 

  2. Hwang C, Sinskey AJ, Lodish HF (1992) Oxidized redox state of glutathione in the endoplasmic reticulum. Science 257:1496–1502

    Article  CAS  PubMed  Google Scholar 

  3. Magni G, Orsomando G, Raffelli N, Ruggieri S (2008) Enzymology of mammalian NAD metabolism in health and disease. Front Biosci 13:6135–6154

    Article  CAS  PubMed  Google Scholar 

  4. Herrero-Mendez A, Almeida A, Fernandez E, Maestre C, Moncada S, Bolanos JP (2009) The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C-Cdh1. Nat Cell Biol 11:747–752

    Article  CAS  PubMed  Google Scholar 

  5. Wilhelm F, Hirrlinger J (2011) The NAD+/NADH redox state in astrocytes: independent control of the NAD+ and NADH content. J Neurosci Res 89:1956–1964

    Article  CAS  PubMed  Google Scholar 

  6. McNay EC, Gold PE (1999) Extracellular glucose concentrations in the rat hippocampus measured by zero-net-flux: effects of microdialysis flow rate, strain, and age. J Neurochem 72:785–790

    Article  CAS  PubMed  Google Scholar 

  7. de Vries MG, Arseneau LM, Lawson ME, Beverly JL (2003) Extracellular glucose in rat ventromedial hypothalamus during acute and recurrent hypoglycemia. Diabetes 52:2767–2773

    Article  PubMed  Google Scholar 

  8. Marcu R, Wiczer BM, Neeley CK, Hawkins BJ (2014) Mitochondrial matrix Ca2+ accumulation regulates cytosolic NAD+/NADH metabolism, protein acetylation, and sirtuin expression. Mol Cell Biol 34:2890–2902

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Requardt RP, Hirrlinger PG, Wilhelm F, Winkler U, Besser S, Hirrlinger J (2012) Ca2+ signals of astrocytes are modulated by the NAD+/NADH redox state. J Neurochem 20:1014–1025

    Google Scholar 

  10. Yang J, Ruchti E, Petit JM, Jourdain P, Grenningloh G, Allaman I, Magistretti PJ (2014) Lactate promotes plasticity gene expression by potentiating NMDA signaling in neurons. Proc Natl Acad Sci USA 111:12228–12233

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Hung YP, Albeck JG, Tantama M, Yellen G (2011) Imaging cytosolic NADH–NAD+ redox state with a genetically encoded fluorescent biosensor. Cell Metab 14:545–554

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Pellerin L, Bouzier-Sore AK, Aubert A, Serres S, Merle M, Costalat R, Magistretti PJ (2007) Activity-dependent regulation of energy metabolism by astrocytes: an update. Glia 55:1251–1262

    Article  PubMed  Google Scholar 

  13. Cerdan S, Rodrigues TB, Sierra A, Benito M, Fonseca LL, Fonseca CP, Garcia-Martin ML (2006) The redox switch/redox coupling hypothesis. Neurochem Int 48:523–530

    Article  CAS  PubMed  Google Scholar 

  14. Ramirez BG, Rodrigues TB, Violante IR, Cruz F, Fonseca LL, Ballesteros P, Castro MM, Garcia-Martin ML, Cerdan S (2007) Kinetic properties of the redox switch/redox coupling mechanism as determined in primary cultures of cortical neurons and astrocytes from rat brain. J Neurosci Res 85:3244–3253

    Article  CAS  PubMed  Google Scholar 

  15. Mergenthaler P, Lindauer U, Dienel GA, Meisel A (2013) Sugar for the brain: the role of glucose in physiological and pathological brain function. Trends Neurosci 36:587–597

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Dienel GA (2013) Astrocytic energetics during excitatory neurotransmission: What are contributions of glutamate oxidation and glycolysis? Neurochem Int 63:244–258

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Lee Y, Morrison BM, Li Y, Lengacher S, Farah MH, Hoffman PN, Liu Y, Tsingalia A, Jin L, Zhang PW, Pellerin L, Magistretti PJ, Rothstein JD (2012) Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature 487:443–448

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Funfschilling U, Supplie LM, Mahad D, Boretius S, Saab AS, Edgar J, Brinkmann BG, Kassmann CM, Tzvetanova ID, Mobius W, Diaz F, Meijer D, Suter U, Hamprecht B, Sereda MW, Moraes CT, Frahm J, Goebbels S, Nave KA (2012) Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature 485:517–521

    PubMed Central  PubMed  Google Scholar 

  19. Hirrlinger J, Nave KA (2014) Adapting brain metabolism to myelination and long-range signal transduction. Glia 62:1749–1761

    Article  PubMed  Google Scholar 

  20. Barros LF (2013) Metabolic signaling by lactate in the brain. Trends Neurosci 36:396–404

    Article  CAS  PubMed  Google Scholar 

  21. Bergersen LH, Gjedde A (2012) Is lactate a volume transmitter of metabolic states of the brain? Front Neuroenergetics 4:5

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Gandhi GK, Cruz NF, Ball KK, Theus SA, Dienel GA (2009) Selective astrocytic gap junctional trafficking of molecules involved in the glycolytic pathway: impact on cellular brain imaging. J Neurochem 110:857–869

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Rouach N, Koulakoff A, Abudara V, Willecke K, Giaume C (2008) Astroglial metabolic networks sustain hippocampal synaptic transmission. Science 322:1551–1555

    Article  CAS  PubMed  Google Scholar 

  24. Lipton P (1973) Effects of membrane depolarization on nicotinamide nucleotide fluorescence in brain slices. Biochem J 136:999–1009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Mayevsky A, Chance B (1975) Metabolic responses of the awake cerebral cortex to anoxia hypoxia spreading depression and epileptiform activity. Brain Res 98:149–165

    Article  CAS  PubMed  Google Scholar 

  26. Mayevsky A, Lebourdais S, Chance B (1980) The interrelation between brain PO2 and NADH oxidation–reduction state in the gerbil. J Neurosci Res 5:173–182

    Article  CAS  PubMed  Google Scholar 

  27. Mayevsky A, Zarchin N, Friedli CM (1982) Factors affecting the oxygen balance in the awake cerebral cortex exposed to spreading depression. Brain Res 236:93–105

    Article  CAS  PubMed  Google Scholar 

  28. Duchen MR (1992) Ca2+-dependent changes in the mitochondrial energetics in single dissociated mouse sensory neurons. Biochem J 283:41–50

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Mayevsky A, Doron A, Manor T, Meilin S, Zarchin N, Ouaknine GE (1996) Cortical spreading depression recorded from the human brain using a multiparametric monitoring system. Brain Res 740:268–274

    Article  CAS  PubMed  Google Scholar 

  30. Mironov SL, Richter DW (2001) Oscillations and hypoxic changes of mitochondrial variables in neurons of the brainstem respiratory centre of mice. J Physiol 533:227–236

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Kann O, Schuchmann S, Buchheim K, Heinemann U (2003) Coupling of neuronal activity and mitochondrial metabolism as revealed by NAD(P)H fluorescence signals in organotypic hippocampal slice cultures of the rat. Neuroscience 119:87–100

    Article  CAS  PubMed  Google Scholar 

  32. Shuttleworth CW, Brennan AM, Connor JA (2003) NAD(P)H fluorescence imaging of postsynaptic neuronal activation in murine hippocampal slices. J Neurosci 23:3196–3208

    CAS  PubMed  Google Scholar 

  33. Kasischke KA, Vishwasrao HD, Fisher PJ, Zipfel WR, Webb WW (2004) Neural activity triggers neuronal oxidative metabolism followed by astrocytic glycolysis. Science 305:99–103

    Article  CAS  PubMed  Google Scholar 

  34. Brennan AM, Connor JA, Shuttleworth CW (2006) NAD(P)H fluorescence transients after synaptic activity in brain slices: predominant role of mitochondrial function. J Cereb Blood Flow Metab 26:1389–1406

    Article  CAS  PubMed  Google Scholar 

  35. Mayevsky A, Chance B (2007) Oxidation–reduction states of NADH in vivo: from animals to clinical use. Mitochondrion 7:330–339

    Article  CAS  PubMed  Google Scholar 

  36. Takano T, Tian GF, Peng W, Lou N, Lovatt D, Hansen AJ, Kasischke KA, Nedergaard M (2007) Cortical spreading depression causes and coincides with tissue hypoxia. Nat Neurosci 10:754–762

    Article  CAS  PubMed  Google Scholar 

  37. Requardt RP, Wilhelm F, Rillich J, Winkler U, Hirrlinger J (2010) The biphasic NAD(P)H fluorescence response of astrocytes to dopamine reflects the metabolic actions of oxidative phosphorylation and glycolysis. J Neurochem 115:483–492

    Article  CAS  PubMed  Google Scholar 

  38. Wang TA, Yu YV, Govindaiah G, Ye X, Artinian L, Coleman TP, Sweedler JV, Cox CL, Gillette MU (2012) Circadian rhythm of redox state regulates excitability in suprachiasmatic nucleus neurons. Science 337:839–842

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Blacker TS, Mann ZF, Gale JE, Ziegler M, Bain AJ, Szabadkai G, Duchen MR (2014) Separating NADH and NADPH fluorescence in live cells and tissues using FLIM. Nat Commun 5:3936

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Zhao Y, Jin J, Hu Q, Zhou HM, Yi J, Yu Z, Xu L, Wang X, Yang Y, Loscalzo J (2011) Genetically encoded fluorescent sensors for intracellular NADH detection. Cell Metab 14:555–566

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Zhao Y, Yang Y (2014) Profiling metabolic states with genetically encoded fluorescent biosensors for NADH. Curr Opin Biotechnol 31C:86–92

    Google Scholar 

  42. Fiacco TA, McCarthy KD (2006) Astrocyte calcium elevations: properties, propagation, and effects on brain signaling. Glia 54:676–690

    Article  PubMed  Google Scholar 

  43. Agulhon C, Petravicz J, McMullen AB, Sweger EJ, Minton SK, Taves SR, Casper KB, Fiacco TA, McCarthy KD (2008) What is the role of astrocyte calcium in neurophysiology? Neuron 59:932–946

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Zorec R, Araque A, Carmignoto G, Haydon PG, Verkhratsky A, Parpura V (2012) Astroglial excitability and gliotransmission: an appraisal of Ca2+ as a signalling route. ASN Neuro 4(2):art:e00080. doi:10.1042/AN20110061

  45. Halassa MM, Florian C, Fellin T, Munoz JR, Lee SY, Abel T, Haydon PG, Frank MG (2009) Astrocytic modulation of sleep homeostasis and cognitive consequences of sleep loss. Neuron 61:213–219

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Blutstein T, Haydon PG (2013) The importance of astrocyte-derived purines in the modulation of sleep. Glia 61:129–139

    Article  PubMed Central  PubMed  Google Scholar 

  47. Howarth C (2014) The contribution of astrocytes to the regulation of cerebral blood flow. Front Neurosci 8:103

    Article  PubMed Central  PubMed  Google Scholar 

  48. Zonta M, Angulo MC, Gobbo S, Rosengarten B, Hossmann KA, Pozzan T, Carmignoto G (2003) Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat Neurosci 6:43–50

    Article  CAS  PubMed  Google Scholar 

  49. Takano T, Tian GF, Peng W, Lou N, Libionka W, Han X, Nedergaard M (2006) Astrocyte-mediated control of cerebral blood flow. Nat Neurosci 9:260–267

    Article  CAS  PubMed  Google Scholar 

  50. Mulligan SJ, MacVicar BA (2004) Calcium transients in astrocyte endfeet cause cerebrovascular constrictions. Nature 431:195–199

    Article  CAS  PubMed  Google Scholar 

  51. Nizar K, Uhlirova H, Tian P, Saisan PA, Cheng Q, Reznichenko L, Weldy KL, Steed TC, Sridhar VB, MacDonald CL, Cui J, Gratiy SL, Sakadzic S, Boas DA, Beka TI, Einevoll GT, Chen J, Masliah E, Dale AM, Silva GA, Devor A (2013) In vivo stimulus-induced vasodilation occurs without IP3 receptor activation and may precede astrocytic calcium increase. J Neurosci 33:8411–8422

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Takata N, Nagai T, Ozawa K, Oe Y, Mikoshiba K, Hirase H (2013) Cerebral blood flow modulation by Basal forebrain or whisker stimulation can occur independently of large cytosolic Ca2+ signaling in astrocytes. PLoS One 8:e66525

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Bonder DE, McCarthy KD (2014) Astrocytic Gq-GPCR-linked IP3R-dependent Ca2+ signaling does not mediate neurovascular coupling in mouse visual cortex in vivo. J Neurosci 34:13139–13150

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Jego P, Pacheco-Torres J, Araque A, Canals S (2014) Functional MRI in mice lacking IP3-dependent calcium signaling in astrocytes. J Cereb Blood Flow Metab 34:1599–1603

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Gordon GR, Choi HB, Rungta RL, Ellis-Davies GC, MacVicar BA (2008) Brain metabolism dictates the polarity of astrocyte control over arterioles. Nature 456:745–749

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Ido Y, Chang K, Williamson JR (2004) NADH augments blood flow in physiologically activated retina and visual cortex. Proc Natl Acad Sci USA 101:653–658

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Vlassenko AG, Rundle MM, Raichle ME, Mintun MA (2006) Regulation of blood flow in activated human brain by cytosolic NADH/NAD+ ratio. Proc Natl Acad Sci 103:1964–1969

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Suzuki A, Stern SA, Bozdagi O, Huntley GW, Walker RH, Magistretti PJ, Alberini CM (2011) Astrocyte–neuron lactate transport is required for long-term memory formation. Cell 144:810–823

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Cai TQ, Ren N, Jin L, Cheng K, Kash S, Chen R, Wright SD, Taggart AK, Waters MG (2008) Role of GPR81 in lactate-mediated reduction of adipose lipolysis. Biochem Biophys Res Commun 377:987–991

    Article  CAS  PubMed  Google Scholar 

  60. Liu C, Wu J, Zhu J, Kuei C, Yu J, Shelton J, Sutton SW, Li X, Yun SJ, Mirzadegan T, Mazur C, Kamme F, Lovenberg TW (2009) Lactate inhibits lipolysis in fat cells through activation of an orphan G-protein-coupled receptor, GPR81. J Biol Chem 284:2811–2822

    Article  CAS  PubMed  Google Scholar 

  61. Ahmed K, Tunaru S, Tang C, Muller M, Gille A, Sassmann A, Hanson J, Offermanns S (2010) An autocrine lactate loop mediates insulin-dependent inhibition of lipolysis through GPR81. Cell Metab 11:311–319

    Article  CAS  PubMed  Google Scholar 

  62. Blad CC, Ahmed K, Ijzerman AP, Offermanns S (2011) Biological and pharmacological roles of HCA receptors. Adv Pharmacol 62:219–250

    Article  CAS  PubMed  Google Scholar 

  63. Lauritzen KH, Morland C, Puchades M, Holm-Hansen S, Hagelin EM, Lauritzen F, Attramadal H, Storm-Mathisen J, Gjedde A, Bergersen LH (2013) Lactate receptor sites link neurotransmission, neurovascular coupling, and brain energy metabolism. Cereb Cortex 24:2784–2795

    Article  PubMed  Google Scholar 

  64. Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O’Keeffe S, Phatnani HP, Guarnieri P, Caneda C, Ruderisch N, Deng S, Liddelow SA, Zhang C, Daneman R, Maniatis T, Barres BA, Wu JQ (2014) An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci 34:11929–11947

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Bozzo L, Puyal J, Chatton JY (2013) Lactate modulates the activity of primary cortical neurons through a receptor-mediated pathway. PLoS One 8:e71721

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Ros J, Pecinska N, Alessandri B, Landolt H, Fillenz M (2001) Lactate reduces glutamate-induced neurotoxicity in rat cortex. J Neurosci Res 66:790–794

    Article  CAS  PubMed  Google Scholar 

  67. Dienel GA (2012) Brain lactate metabolism: the discoveries and the controversies. J Cereb Blood Flow Metab 32:1107–1138

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Tang F, Lane S, Korsak A, Paton JF, Gourine AV, Kasparov S, Teschemacher AG (2014) Lactate-mediated glia-neuronal signalling in the mammalian brain. Nat Commun 5:3284

    PubMed Central  CAS  PubMed  Google Scholar 

  69. Rutter J, Reick M, Wu LC, McKnight SL (2001) Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science 293:510–514

    Article  CAS  PubMed  Google Scholar 

  70. Gillette MU, Wang TA (2014) Brain circadian oscillators and redox regulation in mammals. Antioxid Redox Signal 20:2955–2965

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Nakahata Y, Sahar S, Astarita G, Kaluzova M, Sassone-Corsi P (2009) Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science 324:654–657

    Article  CAS  PubMed  Google Scholar 

  72. Ramsey KM, Yoshino J, Brace CS, Abrassart D, Kobayashi Y, Marcheva B, Hong HK, Chong JL, Buhr ED, Lee C, Takahashi JS, Imai S, Bass J (2009) Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science 324:651–654

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Zhang Q, Piston DW, Goodman RH (2002) Regulation of corepressor function by nuclear NADH. Science 295:1895–1897

    CAS  PubMed  Google Scholar 

  74. Fjeld CC, Birdsong WT, Goodman RH (2003) Differential binding of NAD+ and NADH allows the transcriptional corepressor carboxyl-terminal binding protein to serve as a metabolic sensor. Proc Natl Acad Sci USA 100:9202–9207

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Garriga-Canut M, Schoenike B, Qazi R, Bergendahl K, Daley TJ, Pfender RM, Morrison JF, Ockuly J, Stafstrom C, Sutula T, Roopra A (2006) 2-Deoxy-d-glucose reduces epilepsy progression by NRSF-CtBP-dependent metabolic regulation of chromatin structure. Nat Neurosci 9:1382–1387

    Article  CAS  PubMed  Google Scholar 

  76. Wilhelm F, Hirrlinger J (2012) Multifunctional roles of NAD+ and NADH in astrocytes. Neurochem Res 37:2317–2325

    Article  CAS  PubMed  Google Scholar 

  77. Ying W (2008) NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences. Antioxid Redox Signal 10:179–206

    Article  CAS  PubMed  Google Scholar 

  78. Herskovits AZ, Guarente L (2014) SIRT1 in neurodevelopment and brain senescence. Neuron 81:471–483

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Guarente L (2013) Calorie restriction and sirtuins revisited. Genes Dev 27:2072–2085

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Chang HC, Guarente L (2013) SIRT1 mediates central circadian control in the SCN by a mechanism that decays with aging. Cell 153:1448–1460

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Hallows WC, Yu W, Denu JM (2012) Regulation of glycolytic enzyme phosphoglycerate mutase-1 by Sirt1 protein-mediated deacetylation. J Biol Chem 287:3850–3858

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Lam TK, Gutierrez-Juarez R, Pocai A, Rossetti L (2005) Regulation of blood glucose by hypothalamic pyruvate metabolism. Science 309:943–947

    Article  CAS  PubMed  Google Scholar 

  83. Arrieta-Cruz I, Su Y, Knight CM, Lam TK, Gutierrez-Juarez R (2013) Evidence for a role of proline and hypothalamic astrocytes in the regulation of glucose metabolism in rats. Diabetes 62:1152–1158

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Morton GJ, Cummings DE, Baskin DG, Barsh GS, Schwartz MW (2006) Central nervous system control of food intake and body weight. Nature 443:289–295

    Article  CAS  PubMed  Google Scholar 

  85. Pang ZP, Han W (2012) Regulation of synaptic functions in central nervous system by endocrine hormones and the maintenance of energy homoeostasis. Biosci Rep 32:423–432

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Halaas JL, Gajiwala KS, Maffei M, Cohen SL, Chait BT, Rabinowitz D, Lallone RL, Burley SK, Friedman JM (1995) Weight-reducing effects of the plasma protein encoded by the obese gene. Science 269:543–546

    Article  CAS  PubMed  Google Scholar 

  87. Maffei M, Fei H, Lee GH, Dani C, Leroy P, Zhang Y, Proenca R, Negrel R, Ailhaud G, Friedman JM (1995) Increased expression in adipocytes of ob RNA in mice with lesions of the hypothalamus and with mutations at the db locus. Proc Natl Acad Sci USA 92:6957–6960

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Yi CX, Tschop MH (2012) Brain–gut–adipose–tissue communication pathways at a glance. Dis Model Mech 5:583–587

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Hsuchou H, He Y, Kastin AJ, Tu H, Markadakis EN, Rogers RC, Fossier PB, Pan W (2009) Obesity induces functional astrocytic leptin receptors in hypothalamus. Brain 132:889–902

    Article  PubMed Central  PubMed  Google Scholar 

  90. Kim JG, Suyama S, Koch M, Jin S, Argente-Arizon P, Argente J, Liu ZW, Zimmer MR, Jeong JK, Szigeti-Buck K, Gao Y, Garcia-Caceres C, Yi CX, Salmaso N, Vaccarino FM, Chowen J, Diano S, Dietrich MO, Tschop MH, Horvath TL (2014) Leptin signaling in astrocytes regulates hypothalamic neuronal circuits and feeding. Nat Neurosci 17:908–910

    Article  CAS  PubMed  Google Scholar 

  91. Horvath TL, Sarman B, Garcia-Caceres C, Enriori PJ, Sotonyi P, Shanabrough M, Borok E, Argente J, Chowen JA, Perez-Tilve D, Pfluger PT, Bronneke HS, Levin BE, Diano S, Cowley MA, Tschop MH (2010) Synaptic input organization of the melanocortin system predicts diet-induced hypothalamic reactive gliosis and obesity. Proc Natl Acad Sci USA 107:14875–14880

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Iino M, Goto K, Kakegawa W, Okado H, Sudo M, Ishiuchi S, Miwa A, Takayasu Y, Saito I, Tsuzuki K, Ozawa S (2001) Glia-synapse interaction through Ca2+-permeable AMPA receptors in Bergmann glia. Science 292:926–929

    Article  CAS  PubMed  Google Scholar 

  93. Saab AS, Neumeyer A, Jahn HM, Cupido A, Simek AA, Boele HJ, Scheller A, Le MK, Gotz M, Monyer H, Sprengel R, Rubio ME, Deitmer JW, De Zeeuw CI, Kirchhoff F (2012) Bergmann glial AMPA receptors are required for fine motor coordination. Science 337:749–753

    Article  CAS  PubMed  Google Scholar 

  94. Delgado TC, Violante IR, Nieto-Charques L, Cerdan S (2011) Neuroglial metabolic compartmentation underlying leptin deficiency in the obese ob/ob mice as detected by magnetic resonance imaging and spectroscopy methods. J Cereb Blood Flow Metab 31:2257–2266

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Meister B (2007) Neurotransmitters in key neurons of the hypothalamus that regulate feeding behavior and body weight. Physiol Behav 92:263–271

    Article  CAS  PubMed  Google Scholar 

  96. Sickmann HM, Waagepetersen HS, Schousboe A, Benie AJ, Bouman SD (2010) Obesity and type 2 diabetes in rats are associated with altered brain glycogen and amino-acid homeostasis. J Cereb Blood Flow Metab 30:1527–1537

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. Freeman LR, Zhang L, Nair A, Dasuri K, Francis J, Fernandez-Kim SO, Bruce-Keller AJ, Keller JN (2013) Obesity increases cerebrocortical reactive oxygen species and impairs brain function. Free Radic Biol Med 56:226–233

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Rege SD, Kumar S, Wilson DN, Tamura L, Geetha T, Mathews ST, Huggins KW, Broderick TL, Babu JR (2013) Resveratrol protects the brain of obese mice from oxidative damage. Oxid Med Cell Longev 2013:419092

    Article  PubMed Central  PubMed  Google Scholar 

  99. Metallo CM, Vander Heiden MG (2013) Understanding metabolic regulation and its influence on cell physiology. Mol Cell 49:388–398

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  100. McKnight SL (2010) On getting there from here. Science 330:1338–1339

    Article  CAS  PubMed  Google Scholar 

  101. Dringen R, Brandmann M, Hohnholt CM, Blumrich E-M (2014) Glutathione-dependent detoxification processes in astrocytes. Neurochem Res. doi:10.1007/s11064-014-1481-1

Download references

Acknowledgments

We apologize to many colleagues whose work could not be cited owing to space restrictions. Work of the authors’ laboratory was supported by grants from the DFG Hi1414/1-1; Hi1414/2-1 and the German Diabetes Society (J.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Hirrlinger.

Additional information

Special Issue: In Honor of Dr. Gerald Dienel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Winkler, U., Hirrlinger, J. Crosstalk of Signaling and Metabolism Mediated by the NAD+/NADH Redox State in Brain Cells. Neurochem Res 40, 2394–2401 (2015). https://doi.org/10.1007/s11064-015-1526-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-015-1526-0

Keywords

Navigation