Skip to main content
Log in

Effects of Pentylenetetrazole Kindling on Mitogen-Activated Protein Kinases Levels in Neocortex and Hippocampus of Mice

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The epileptogenesis process involves cell signaling events associated with neuroplasticity. The mitogen-activated protein kinases (MAPKs) integrate signals originating from a variety of extracellular stimuli and may regulate cell differentiation, survival, cell death and synaptic plasticity. Here we compared the total and phosphorylated MAPKs (ERK1/2, JNK1/2 and p38MAPK) levels in the neocortex and hippocampus of adult Swiss male mice quantified by western blotting analysis 48 h after the last injection of pentylenetetrazole (PTZ), according to the kindling protocol (35 mg/kg, i.p., on alternated days, with a total of eight injections). The total levels of the investigated MAPKs and the phospho-p38MAPK in the neocortex and hippocampus were not affected by the PTZ injections. The MAPKs phosphorylation levels remain unaltered in PTZ-treated animals without convulsive seizures. The phospho-JNK2 phosphorylation, but not the phospho-JNK1, was increased in the hippocampus of PTZ-treated animals showing 1–3 days with convulsive seizures, whereas no significant changes were observed in those animals with more than 3 days with convulsive seizures. The phospho-ERK1/2 phosphorylation decreased in the neocortex and increased in the hippocampus of animals with 1–4 days with convulsive seizures and became unaltered in mice that showed convulsive seizures for more than 4 days. These findings indicate that resistance to PTZ kindling is associated with unaltered ERK1/2, JNK1/2 and p38MAPK phosphorylation levels in the neocortex and hippocampus. Moreover, when the PTZ kindling-induced epileptogenesis manifests behaviorally, the activation of the different MAPKs sub-families shows a variable and non-linear pattern in the neocortex and hippocampus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

PTZ:

Pentylenetetrazole

MAPKs:

Mitogen-activated protein kinases

ERK1/2:

Extracellular signal-regulated kinases 1 and 2

JNK1/2/3:

c-Jun-N-terminal kinases 1-3

p38MAPKa/b/c/d:

p38 Kinases a-d

References

  1. Dichter MA, Ayala GF (1987) Cellular mechanisms of epilepsy: a status report. Science 237:157–164

    Article  CAS  PubMed  Google Scholar 

  2. Meldrum BS, Akbar MT, Chapman AG (1999) Glutamate receptors and transporters in genetic and acquired models of epilepsy. Epilepsy Res 36:189–204

    Article  CAS  PubMed  Google Scholar 

  3. Coulter DA (2001) Epilepsy-associated plasticity in gamma-aminobutyric acid receptor expression, function, and inhibitory synaptic properties. Int Rev Neurobiol 45:237–252

    Article  CAS  PubMed  Google Scholar 

  4. Galanopoulou AS, Buckmaster PS, Staley KJ et al (2012) Identification of new epilepsy treatments: issues in preclinical methodology. Epilepsia 53:571–582. doi:10.1111/j.1528-1167.2011.03391.x

    Article  PubMed Central  PubMed  Google Scholar 

  5. Berg AT (2004) Understanding the delay before epilepsy surgery: Who develops intractable focal epilepsy and when? CNS Spectr 9:136–144

    PubMed  Google Scholar 

  6. Huang R-Q, Bell-Horner CL, Dibas MI et al (2001) Pentylenetetrazole-induced inhibition of recombinant gamma—aminobutyric acid type A (GABAA) receptors: mechanism and site of action. J Pharmacol Exp Ther 298:986–995

    CAS  PubMed  Google Scholar 

  7. Racine R, Okujava V, Chipashvili S (1972) Modification of seizure activity by electrical stimulation. 3. Mechanisms. Electroencephalogr Clin Neurophysiol 32:295–299

    Article  CAS  PubMed  Google Scholar 

  8. Walz R, Amaral OB, Rockenbach IC et al (1999) Increased sensitivity to seizures in mice lacking cellular prion protein. Epilepsia 40:1679–1682

    Article  CAS  PubMed  Google Scholar 

  9. Bonan CD, Amaral OB, Rockenbach IC et al (2000) Altered ATP hydrolysis induced by pentylenetetrazol kindling in rat brain synaptosomes. Neurochem Res 25:775–779

    Article  CAS  PubMed  Google Scholar 

  10. Zhang B, Wong M (2012) Pentylenetetrazole-induced seizures cause acute, but not chronic, mTOR pathway activation in rat. Epilepsia 53:506–511. doi:10.1111/j.1528-1167.2011.03384.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Ekonomou A, Smith AL, Angelatou F (2001) Changes in AMPA receptor binding and subunit messenger RNA expression in hippocampus and cortex in the pentylenetetrazole-induced “kindling” model of epilepsy. Brain Res Mol Brain Res 95:27–35

    Article  CAS  PubMed  Google Scholar 

  12. Thomas GM, Huganir RL (2004) MAPK cascade signalling and synaptic plasticity. Nat Rev Neurosci 5:173–183. doi:10.1038/nrn1346

    Article  CAS  PubMed  Google Scholar 

  13. Waetzig V, Herdegen T (2004) Neurodegenerative and physiological actions of c-Jun N-terminal kinases in the mammalian brain. Neurosci Lett 361:64–67

    Article  CAS  PubMed  Google Scholar 

  14. Lee E, Son H (2009) Adult hippocampal neurogenesis and related neurotrophic factors. BMB Rep 42:239–244

    Article  CAS  PubMed  Google Scholar 

  15. Chang L, Karin M (2001) Mammalian MAP kinase signalling cascades. Nature 410:37–40. doi:10.1038/35065000

    Article  CAS  PubMed  Google Scholar 

  16. Chen Z, Gibson TB, Robinson F et al (2001) MAP kinases. Chem Rev 101:2449–2476. doi:10.1021/cr000241p

    Article  CAS  PubMed  Google Scholar 

  17. Lopes MW, Soares FMS, de Mello N et al (2012) Time-dependent modulation of mitogen activated protein kinases and AKT in rat hippocampus and cortex in the pilocarpine model of epilepsy. Neurochem Res 37:1868–1878. doi:10.1007/s11064-012-0797-y

    Article  CAS  PubMed  Google Scholar 

  18. De Lemos L, Junyent F, Verdaguer E et al (2010) Differences in activation of ERK1/2 and p38 kinase in Jnk3 null mice following KA treatment. J Neurochem 114:1315–1322. doi:10.1111/j.1471-4159.2010.06853.x

    PubMed  Google Scholar 

  19. Mielke K, Brecht S, Dorst A, Herdegen T (1999) Activity and expression of JNK1, p38 and ERK kinases, c-Jun N-terminal phosphorylation, and c-jun promoter binding in the adult rat brain following kainate-induced seizures. Neuroscience 91:471–483

    Article  CAS  PubMed  Google Scholar 

  20. Hsieh C-L, Lin J-J, Chiang S-Y et al (2007) Gastrodia elata modulated activator protein 1 via c-Jun N-terminal kinase signaling pathway in kainic acid-induced epilepsy in rats. J Ethnopharmacol 109:241–247. doi:10.1016/j.jep.2006.07.024

    Article  PubMed  Google Scholar 

  21. Cole-Edwards KK, Musto AE, Bazan NG (2006) c-Jun N-terminal kinase activation responses induced by hippocampal kindling are mediated by reactive astrocytes. J Neurosci 26:8295–8304. doi:10.1523/JNEUROSCI.1986-05.2006

    Article  CAS  PubMed  Google Scholar 

  22. Morgan L, Neame SJ, Child H et al (2006) Development of a pentylenetetrazole-induced seizure model to evaluate kinase inhibitor efficacy in the central nervous system. Neurosci Lett 395:143–148. doi:10.1016/j.neulet.2005.10.068

    Article  CAS  PubMed  Google Scholar 

  23. Kang UG, Hong KS, Jung HY et al (2002) Activation and tyrosine phosphorylation of 44-kDa mitogen-activated protein kinase (MAPK) induced by electroconvulsive shock in rat hippocampus. J Neurochem 63:1979–1982. doi:10.1046/j.1471-4159.1994.63051979.x

    Article  Google Scholar 

  24. Lüttjohann A, Fabene PF, van Luijtelaar G (2009) A revised Racine’s scale for PTZ-induced seizures in rats. Physiol Behav 98:579–586. doi:10.1016/j.physbeh.2009.09.005

    Article  PubMed  Google Scholar 

  25. Racine RJ (1972) Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophysiol 32:269–279

    Article  CAS  PubMed  Google Scholar 

  26. Racine RJ (1972) Modification of seizure activity by electrical stimulation. I. After-discharge threshold. Electroencephalogr Clin Neurophysiol 32:269–279

    Article  CAS  PubMed  Google Scholar 

  27. Ben-Ari Y, Tremblay E, Riche D et al (1981) Electrographic, clinical and pathological alterations following systemic administration of kainic acid, bicuculline or pentetrazole: metabolic mapping using the deoxyglucose method with special reference to the pathology of epilepsy. Neuroscience 6:1361–1391

    Article  CAS  PubMed  Google Scholar 

  28. Leal RB, Cordova FM, Herd L et al (2002) Lead-stimulated p38MAPK-dependent Hsp27 phosphorylation. Toxicol Appl Pharmacol 178:44–51. doi:10.1006/taap.2001.9320

    Article  CAS  PubMed  Google Scholar 

  29. Cordova FM, Rodrigues ALS, Giacomelli MBO et al (2004) Lead stimulates ERK1/2 and p38MAPK phosphorylation in the hippocampus of immature rats. Brain Res 998:65–72

    Article  CAS  PubMed  Google Scholar 

  30. Posser T, de Aguiar CBNM, Garcez RC et al (2007) Exposure of C6 glioma cells to Pb (II) increases the phosphorylation of p38 (MAPK) and JNK1/2 but not of ERK1/2. Arch Toxicol 81:407–414. doi:10.1007/s00204-007-0177-6

    Article  CAS  PubMed  Google Scholar 

  31. Oliveira CS, Rigon AP, Leal RB, Rossi FM (2008) The activation of ERK1/2 and p38 mitogen-activated protein kinases is dynamically regulated in the developing rat visual system. Int J Dev Neurosci 26:355–362

    Article  CAS  PubMed  Google Scholar 

  32. Peterson GL (1977) A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem 83:346–356

    Article  CAS  PubMed  Google Scholar 

  33. Sweatt JD (2004) Mitogen-activated protein kinases in synaptic plasticity and memory. Curr Opin Neurobiol 14:311–317

    Article  CAS  PubMed  Google Scholar 

  34. Beaumont TL, Yao B, Shah A et al (2012) Layer-specific CREB target gene induction in human neocortical epilepsy. J Neurosci 32:14389–14401. doi:10.1523/JNEUROSCI.3408-12.2012

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Choi Y-S, Cho H-Y, Hoyt KR et al (2008) IGF-1 receptor-mediated ERK/MAPK signaling couples status epilepticus to progenitor cell proliferation in the subgranular layer of the dentate gyrus. Glia 56:791–800. doi:10.1002/glia.20653

    Article  PubMed Central  PubMed  Google Scholar 

  36. Garrido YC, Sanabria ER, Funke MG et al (1998) Mitogen-activated protein kinase is increased in the limbic structures of the rat brain during the early stages of status epilepticus. Brain Res Bull 47:223–229

    Article  CAS  PubMed  Google Scholar 

  37. Jeon SH, Kim YS, Bae CD, Park JB (2000) Activation of JNK and p38 in rat hippocampus after kainic acid induced seizure. Exp Mol Med 32:227–230

    Article  CAS  PubMed  Google Scholar 

  38. Park HJ, Kim HJ, Park HJ et al (2008) Protective effect of topiramate on kainic acid-induced cell death in mice hippocampus. Epilepsia 49:163–167. doi:10.1111/j.1528-1167.2007.01308.x

    Article  CAS  PubMed  Google Scholar 

  39. Cavalheiro EA, Leite JP, Bortolotto ZA et al (1991) Long-term effects of pilocarpine in rats: structural damage of the brain triggers kindling and spontaneous recurrent seizures. Epilepsia 32:778–782

    Article  CAS  PubMed  Google Scholar 

  40. Waetzig V, Zhao Y, Herdegen T (2006) The bright side of JNKs—multitalented mediators in neuronal sprouting, brain development and nerve fiber regeneration. Prog Neurobiol 80:84–97. doi:10.1016/j.pneurobio.2006.08.002

    Article  CAS  PubMed  Google Scholar 

  41. Kuan C-Y, Yang DD, Roy DRS et al (1999) The Jnk1 and Jnk2 protein kinases are required for regional specific apoptosis during early brain development. Neuron 22:667–676. doi:10.1016/S0896-6273(00)80727-8

    Article  CAS  PubMed  Google Scholar 

  42. Bevilaqua LRM, Kerr DS, Medina JH et al (2003) Inhibition of hippocampal Jun N-terminal kinase enhances short-term memory but blocks long-term memory formation and retrieval of an inhibitory avoidance task. Eur J Neurosci 17:897–902. doi:10.1046/j.1460-9568.2003.02524.x

    Article  PubMed  Google Scholar 

  43. Weston CR, Davis RJ (2007) The JNK signal transduction pathway. Curr Opin Cell Biol 19:142–149

    Article  CAS  PubMed  Google Scholar 

  44. Brecht S, Kirchhof R, Chromik A et al (2005) Specific pathophysiological functions of JNK isoforms in the brain. Eur J Neurosci 21:363–377. doi:10.1111/j.1460-9568.2005.03857.x

    Article  PubMed  Google Scholar 

  45. Chen X, Wu J, Hua D et al (2010) The c-Jun N-terminal kinase inhibitor SP600125 is neuroprotective in amygdala kindled rats. Brain Res 1357:104–114. doi:10.1016/j.brainres.2010.07.082

    Article  CAS  PubMed  Google Scholar 

  46. Jung S, Bullis JB, Lau IH et al (2010) Downregulation of dendritic HCN channel gating in epilepsy is mediated by altered phosphorylation signaling. J Neurosci 30:6678–6688. doi:10.1523/JNEUROSCI.1290-10.2010.Downregulation

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Franke H, Kittner H (2001) Morphological alterations of neurons and astrocytes and changes in emotional behavior in pentylenetetrazol-kindled rats. Pharmacol Biochem Behav 70:291–303. doi:10.1016/S0091-3057(01)00612-8

    Article  CAS  PubMed  Google Scholar 

  48. Aniol VA, Stepanichev MY, Lazareva NA, Gulyaeva NV (2011) An early decrease in cell proliferation after pentylenetetrazole-induced seizures. Epilepsy Behav 22:433–441. doi:10.1016/j.yebeh.2011.08.002

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq—Projects: IBN-Net #01.06.0842-00; INCT for Excitotoxicity and Neuroprotection), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Programa de Apoio aos Núcleos de Excelência (PRONEX—Project NENASC), Fundação de Apoio à Pesquisa do Estado de Santa Catarina (FAPESC). J.B., P.A.O., F.M.G., T.V.P., A.A.H. and F.C.M. received scholarships from CAPES, CNPq or FAPESC; R.B.L., R.W. and R.D.P. are supported by research fellowships from CNPq-Brazil.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Daniel Prediger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben, J., de Oliveira, P.A., Gonçalves, F.M. et al. Effects of Pentylenetetrazole Kindling on Mitogen-Activated Protein Kinases Levels in Neocortex and Hippocampus of Mice. Neurochem Res 39, 2492–2500 (2014). https://doi.org/10.1007/s11064-014-1453-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-014-1453-5

Keywords

Navigation