Skip to main content

Advertisement

Log in

P2Y13 Receptor-Mediated Rapid Increase in Intracellular Calcium Induced by ADP in Cultured Dorsal Spinal Cord Microglia

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

P2Y receptors have been implicated in the calcium mobilization by the response to neuroexcitatory substances in neurons and astrocytes, but little is known about P2Y receptors in microglia cells. In the present study, the effects of ADP on the intracellular calcium concentration ([Ca2+]i) in cultured dorsal spinal cord microglia were detected with confocal laser scanning microscopy using fluo-4/AM as a calcium fluorescence indicator that could monitor real-time alterations of [Ca2+]i. Here we show that ADP (0.01–100 μM) causes a rapid increase in [Ca2+]i with a dose-dependent manner in cultured microglia. The action of ADP on [Ca2+]i was significantly blocked by MRS2211 (a selective P2Y13 receptor antagonist), but was unaffected by MRS2179 (a selective P2Y1 receptor antagonist) or MRS2395 (a selective P2Y12 receptor antagonist), which suggest that P2Y13 receptor may be responsible for ADP-evoked Ca2+ mobilization in cultured microglia. P2Y13-evoked Ca2+ response can be obviously inhibited by BAPTA-AM and U-73122, respectively. Moreover, removal of extracellular Ca2+ (by EGTA) also can obvious suppress the Ca2+ mobilization. These results means both intracellular calcium and extracellular calcium are potentially important mechanisms in P2Y13 receptor-evoked Ca2+ mobilization. However, P2Y13 receptor-evoked Ca2+ response was not impaired after CdCl2 and verapamil administration, which suggest that voltage-operated Ca2+ channels may be not related with P2Y13-evoked Ca2+ response. In addition, Ca2+ mobilization induced by ADP was abolished by different store-operated Ca2+ channels (SOCs) blocker, 2-APB (50 μM) and SKF-96365 (1 mM), respectively. These observations suggest that the activation of P2Y13 receptor might be involved in the effect of ADP on [Ca2+]i in cultured dorsal spinal cord microglia. Furthermore, our results raise a possibility that P2Y13 receptor activation causes Ca2+ release from Ca2+ store, which leads to the opening of SOCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. El Khoury J, Luster AD (2008) Mechanisms of microglia accumulation in Alzheimer’s disease: therapeutic implications. Trends Pharmacol Sci 29(12):626–632

    Article  PubMed  Google Scholar 

  2. Skaper SD (2011) Ion channels on microglia: therapeutic targets for neuroprotection. CNS Neurol Disord Drug Targets 10(1):44–56

    Article  PubMed  CAS  Google Scholar 

  3. Lee M (2013) Neurotransmitters and microglial-mediated neuroinflammation. Curr Protein Pept Sci 14(1):21–32

    Article  PubMed  CAS  Google Scholar 

  4. Inoue K (2007) Involvement of microglia in neuropathic pain signalling. Brain Nerve 59(7):739–746

    PubMed  CAS  Google Scholar 

  5. Graeber MB, Christie MJ (2012) Multiple mechanisms of microglia: a gatekeeper’s contribution to pain states. Exp Neurol 234(2):255–261

    Article  PubMed  CAS  Google Scholar 

  6. Tsuda M, Masuda T, Tozaki-Saitoh H, Inoue K (2013) Microglial regulation of neuropathic pain. J Pharmacol Sci 121(2):89–94

    Article  PubMed  CAS  Google Scholar 

  7. Abbracchio MP, Burnstock G, Boeynaems JM, Barnard EA, Boyer JL, Kennedy C, Knight GE, Fumagalli M, Gachet C, Jacobson KA, Weisman GA (2006) International Union of Pharmacology LVIII: update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy. Pharmacol Rev 58(3):281–341

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Ohsawa K, Irino Y, Sanagi T, Nakamura Y, Suzuki E, Inoue K, Kohsaka S (2010) P2Y12 receptor-mediated integrin-beta1 activation regulates microglial process extension induced by ATP. Glia 58(7):790–801

    PubMed  Google Scholar 

  9. Ohsawa K, Irino Y, Nakamura Y, Akazawa C, Inoue K, Kohsaka S (2007) Involvement of P2X4 and P2Y12 receptors in ATP-induced microglial chemotaxis. Glia 55(6):604–616

    Article  PubMed  Google Scholar 

  10. Kobayashi K, Fukuoka T, Yamanaka H, Dai Y, Obata K, Tokunaga A, Noguchi K (2006) Neurons and glial cells differentially express P2Y receptor mRNAs in the rat dorsal root ganglion and spinal cord. J Comp Neurol 498(4):443–454

    Article  PubMed  CAS  Google Scholar 

  11. Kobayashi K, Yamanaka H, Yanamoto F, Okubo M, Noguchi K (2012) Multiple P2Y subtypes in spinal microglia are involved in neuropathic pain after peripheral nerve injury. Glia 60(10):1529–1539

    Article  PubMed  Google Scholar 

  12. Kobayashi K, Yamanaka H, Fukuoka T, Dai Y, Obata K, Noguchi K (2008) P2Y12 receptor upregulation in activated microglia is a gateway of p38 signaling and neuropathic pain. J Neurosci 28(11):2892–2902

    Article  PubMed  CAS  Google Scholar 

  13. Tozaki-Saitoh H, Tsuda M, Miyata H, Ueda K, Kohsaka S, Inoue K (2008) P2Y12 receptors in spinal microglia are required for neuropathic pain after peripheral nerve injury. J Neurosci 28(19):4949–4956

    Article  PubMed  CAS  Google Scholar 

  14. Möller T, Nolte C, Burger R, Verkhratsky A, Kettenmann H (1997) Mechanisms of C5a and C3a complement fragment-induced [Ca2+]i signaling in mouse microglia. J Neurosci 17(2):615–624

    PubMed  Google Scholar 

  15. Sieger D, Moritz C, Ziegenhals T, Prykhozhij S, Peri F (2012) Long-range Ca2+ waves transmit brain-damage signals to microglia. Dev Cell 22(6):1138–1148

    Article  PubMed  CAS  Google Scholar 

  16. Khaira SK, Pouton CW, Haynes JM (2009) P2X2, P2X4 and P2Y1 receptors elevate intracellular Ca2+ in mouse embryonic stem cell-derived GABAergic neurons. Br J Pharmacol 158(8):1922–1931

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Zeng JW, Liu XH, Zhang JH, Wu XG, Ruan HZ (2008) P2Y1 receptor-mediated glutamate release from cultured dorsal spinal cord astrocytes. J Neurochem 106(5):2106–2118

    Article  PubMed  CAS  Google Scholar 

  18. Zeng JW, Liu XH, Zhao YD, Xiao Z, He WJ, Hu ZA, Ruan HZ (2009) Role of P2Y1 receptor in neuron-to-glia signaling at dorsal spinal cord. J Neurosci Res 87(12):2667–2676

    Article  PubMed  CAS  Google Scholar 

  19. Trang T, Beggs S, Wan X, Salter MW (2009) P2X4-receptor-mediated synthesis and release of brain-derived neurotrophic factor in microglia is dependent on calcium and p38-mitogen- activated protein kinase activation. J Neurosci 29(11):3518–3528

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Clark AK, Wodarski R, Guida F, Sasso O, Malcangio M (2010) Cathepsin S release from primary cultured microglia is regulated by the P2X7 receptor. Glia 58(14):1710–1726

    Article  PubMed  Google Scholar 

  21. Visentin S, Nuccio CD, Bellenchi GC (2006) Different patterns of Ca2+ signals are induced by low compared to high concentrations of P2Y agonists in microglia. Purinergic Signal 2(4):605–617

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Light AR, Wu Y, Hughen RW, Guthrie PB (2006) Purinergic receptors activating rapid intracellular Ca increases in microglia. Neuron Glia Biol 2(2):125–138

    Article  PubMed  PubMed Central  Google Scholar 

  23. Salter MW, Hicks JL (1994) ATP-evoked increases in intracellular calcium in neurons and glia from the dorsal spinal cord. J Neurosci 14(3 Pt 2):1563–1575

    PubMed  CAS  Google Scholar 

  24. Ni M, Aschner M (2010) Neonatal rat primary microglia: isolation, culturing, and selected applications. Curr Protoc Toxicol Chapter 12, Unit 12–17

  25. Peterson ER, Crain SM (1982) Nerve growth factor attenuates neurotoxic effects of taxol on spinal cord-ganglion explants from fetal mice. Science 217(4557):377–379

    Article  PubMed  CAS  Google Scholar 

  26. Gee KR, Brown KA, Chen WN, Bishop-Stewart J, Gray D, Johnson I (2000) Chemical and physiological characterization of fluo-4 Ca2+-indicator dyes. Cell Calcium 27(2):97–106

    Article  PubMed  CAS  Google Scholar 

  27. Alves E, Bartlett PJ, Garcia CR, Thomas AP (2011) Melatonin and IP3-induced Ca2+ release from intracellular stores in the malaria parasite Plasmodium falciparum within infected red blood cells. J Biol Chem 286(7):5905–5912

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Walz W, Ilschner S, Ohlemeyer C, Banati R, Kettenmann H (1993) Extracellular ATP activates a cation conductance and a K+ conductance in cultured microglial cells from mouse brain. J Neurosci 13(10):4403–4411

    PubMed  CAS  Google Scholar 

  29. Sage SO, Reast R, Rink TJ (1990) ADP evokes biphasic Ca2+ influx in fura-2-loaded human platelets. Evidence for Ca2+ entry regulated by the intracellular Ca2+ store. Biochem J 265(3):675–680

    PubMed  CAS  PubMed Central  Google Scholar 

  30. Baryshnikov SG, Rogachevskaja OA, Kolesnikov SS (2003) Calcium signaling mediated by P2Y receptors in mouse taste cells. J Neurophysiol 90(5):3283–3294

    Article  PubMed  CAS  Google Scholar 

  31. Antkiewicz-Michaluk L (1995) Receptor and voltage-operated ion channels in the central nervous system. Pol J Pharmacol 47(3):253–264

    Article  PubMed  CAS  Google Scholar 

  32. Carmignoto G, Pasti L, Pozzan T (1998) On the role of voltage-dependent calcium channels in calcium signaling of astrocytes in situ. J Neurosci 18(12):4637–4645

    PubMed  CAS  Google Scholar 

  33. Paez PM, Fulton DJ, Spreur V, Handley V, Campagnoni AT (2010) Multiple kinase pathways regulate voltage-dependent Ca2+ influx and migration in oligodendrocyte precursor cells. J Neurosci 30(18):6422–6433

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Visentin S, Renzi M, Frank C, Greco A, Levi G (1999) Two different ionotropic receptors are activated by ATP in rat microglia. J Physiol 519(Pt 3):723–736

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. McLarnon JG, Helm J, Goghari V, Franciosi S, Choi HB, Nagai A, Kim SU (2000) Anion channels modulate store-operated calcium influx in human microglia. Cell Calcium 28(4):261–268

    Article  PubMed  CAS  Google Scholar 

  36. Hong SH, Choi HB, Kim SU, McLarnon JG (2006) Mitochondrial ligand inhibits store-operated calcium influx and COX-2 production in human microglia. J Neurosci Res 83(7):1293–1298

    Article  PubMed  CAS  Google Scholar 

  37. Ohana L, Newell EW, Stanley EF, Schlichter LC (2009) The Ca2+ release-activated Ca2+ current (I(CRAC)) mediates store-operated Ca2+ entry in rat microglia. Channels 3(2):129–139

    Article  PubMed  CAS  Google Scholar 

  38. Jantaratnotai N, Choi HB, McLarnon JG (2009) ATP stimulates chemokine production via a store-operated calcium entry pathway in C6 glioma cells. BMC Cancer 9:442

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ulmann L, Levavasseur F, Avignone E, Peyroutou R, Hirbec H, Audinat E, Rassendren F (2013) Involvement of P2X4 receptors in hippocampal microglial activation after status epilepticus. Glia 61(8):1306–1319

    Article  PubMed  Google Scholar 

  40. Avignone E, Ulmann L, Levavasseur F, Rassendren F, Audinat E (2008) Status epilepticus induces a particular microglial activation state characterized by enhanced purinergic signaling. J Neurosci 28(37):9133–9144

    Article  PubMed  CAS  Google Scholar 

  41. Lai AY, Dhami KS, Dibal CD, Todd KG (2011) Neonatal rat microglia derived from different brain regions have distinct activation responses. Neuron Glia Biol 7(1):5–16

    Article  PubMed  Google Scholar 

  42. Smith SM, Friedle SA, Watters JJ (2013) Chronic intermittent hypoxia exerts CNS region-specific effects on rat microglial inflammatory and TLR4 gene expression. PLoS One 8(12):e81584

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ren L, Lubrich B, Biber K, Gebicke-Haerter PJ (1999) Differential expression of inflammatory mediators in rat microglia cultured from different brain regions. Brain Res Mol Brain Res 65(2):198–205

    Article  PubMed  CAS  Google Scholar 

  44. Wei J, Wu F, Sun X, Zeng X, Liang JY, Zheng HQ, Yu XB, Zhang KX, Wu ZD (2013) Differences in microglia activation between rats-derived cell and mice-derived cell after stimulating by soluble antigen of IV larva from Angiostrongylus cantonensis in vitro. Parasitol Res 112(1):207–214

    Article  PubMed  Google Scholar 

  45. Xing B, Xin T, Hunter RL, Bing G (2008) Pioglitazone inhibition of lipopolysaccharide-induced nitric oxide synthase is associated with altered activity of p38 MAP kinase and PI3K/Akt. J Neuroinflammation 5:4

    Article  PubMed  PubMed Central  Google Scholar 

  46. Tan YH, Li K, Chen XY, Cao Y, Light AR, Fu KY (2012) Activation of Src family kinases in spinal microglia contributes to formalin-induced persistent pain state through p38 pathway. J Pain 13(10):1008–1015

    Article  PubMed  CAS  Google Scholar 

  47. Nakajima K, Tohyama Y, Kohsaka S, Kurihara T (2004) Protein kinase C alpha requirement in the activation of p38 mitogen-activated protein kinase, which is linked to the induction of tumor necrosis factor alpha in lipopolysaccharide-stimulated microglia. Neurochem Int 44(4):205–214

    Article  PubMed  CAS  Google Scholar 

  48. Giovannini MG, Scali C, Prosperi C, Bellucci A, Vannucchi MG, Rosi S, Pepeu G, Casamenti F (2002) Beta-amyloid-induced inflammation and cholinergic hypofunction in the rat brain in vivo: involvement of the p38MAPK pathway. Neurobiol Dis 11(2):257–274

    Article  PubMed  CAS  Google Scholar 

  49. Irino Y, Nakamura Y, Inoue K, Kohsaka S, Ohsawa K (2008) Akt activation is involved in P2Y12 receptor-mediated chemotaxis of microglia. J Neurosci Res 86(7):1511–1519

    Article  PubMed  CAS  Google Scholar 

  50. Lee S, Chung CY (2009) Role of VASP phosphorylation for the regulation of microglia chemotaxis via the regulation of focal adhesion formation/maturation. Mol Cell Neurosci 42(4):382–390

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  51. Lee M, Jantaratnotai N, McGeer E, McLarnon JG, McGeer PL (2011) Mg2+ ions reduce microglial and THP-1 cell neurotoxicity by inhibiting Ca2+ entry through purinergic channels. Brain Res 19(1369):21–35

    CAS  Google Scholar 

  52. Marteau F, Le Poul E, Communi D, Labouret C, Savi P, Boeynaems JM, Gonzalez NS (2003) Pharmacological characterization of the human P2Y13 receptor. Mol Pharmacol 64(1):104–112

    Article  PubMed  CAS  Google Scholar 

  53. Communi D, Gonzalez NS, Detheux M, Brezillon S, Lannoy V, Parmentier M, Boeynaems JM (2001) Identification of a novel human ADP receptor coupled to Gi. J Biol Chem 276(44):41479–41485

    Article  PubMed  CAS  Google Scholar 

  54. Jiang X, Newell EW, Schlichter LC (2003) Regulation of a TRPM7-like current in rat brain microglia. J Biol Chem 278(44):42867–42876

    Article  PubMed  CAS  Google Scholar 

  55. Farber K, Kettenmann H (2005) Physiology of microglial cells. Brain Res Brain Res Rev 48(2):133–143

    Article  PubMed  Google Scholar 

  56. Feske S (2010) CRAC channelopathies. Pflugers Arch 460(2):417–435

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  57. Ichikawa J, Gemba H (2009) Cell density-dependent changes in intracellular Ca2+ mobilization via the P2Y2 receptor in rat bone marrow stromal cells. J Cell Physiol 219(2):372–381

    Article  PubMed  CAS  Google Scholar 

  58. Dong X, Smoll EJ, Ko KH, Lee J, Chow JY, Kim HD, Insel PA, Dong H (2009) P2Y receptors mediate Ca2+ signaling in duodenocytes and contribute to duodenal mucosal bicarbonate secretion. Am J Physiol Gastrointest Liver Physiol 296(2):G424–G432

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  59. Ashida N, Ueyama T, Rikitake K, Shirai Y, Eto M, Kondoh T, Kohmura E, Saito N (2008) Ca2+ oscillation induced by P2Y2 receptor activation and its regulation by a neuron-specific subtype of PKC (gammaPKC). Neurosci Lett 446(2–3):123–128

    Article  PubMed  CAS  Google Scholar 

  60. Wang X, Kim SU, van Breemen C, McLarnon JG (2000) Activation of purinergic P2X receptors inhibits P2Y-mediated Ca2+ influx in human microglia. Cell Calcium 27(4):205–212

    Article  PubMed  CAS  Google Scholar 

  61. Lee SW, Hu YS, Hu LF, Lu Q, Dawe GS, Moore PK, Wong PT, Bian JS (2006) Hydrogen sulphide regulates calcium homeostasis in microglial cells. Glia 54(2):116–124

    Article  PubMed  Google Scholar 

  62. Voss U, Turesson MF, Robaye B, Boeynaems JM, Olde B, Erlinge D, Ekblad E (2014) The enteric nervous system of P2Y13 receptor null mice is resistant against high-fat-diet- and palmitic-acid-induced neuronal loss. Purinergic Signal. doi:10.1007/s11302-014-9408-5

  63. Espada S, Ortega F, Molina-Jijón E, Rojo AI, Pérez-Sen R, Pedraza-Chaverri J, Miras-Portugal MT, Cuadrado A (2010) The purinergic P2Y(13) receptor activates the Nrf2/HO-1 axis and protects against oxidative stress-induced neuronal death. Free Radic Biol Med 49(3):416–426

    Article  PubMed  CAS  Google Scholar 

  64. Yano S, Tsukimoto M, Harada H, Kojima S (2012) Involvement of P2Y13 receptor in suppression of neuronal differentiation. Neurosci Lett 518(1):5–9

    Article  PubMed  CAS  Google Scholar 

  65. Lyubchenko T, Woodward H, Veo KD, Burns N, Nijmeh H, Liubchenko GA, Stenmark KR, Gerasimovskaya EV (2011) P2Y1 and P2Y13 purinergic receptors mediate Ca2+ signaling and proliferative responses in pulmonary artery vasa vasorum endothelial cells. Am J Physiol Cell Physiol 300(2):C266–C275

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  66. Ohtomo K, Shatos MA, Vrouvlianis J, Li D, Hodges RR, Dartt DA (2011) Increase of intracellular Ca2+ by purinergic receptors in cultured rat lacrimal gland myoepithelial cells. Invest Ophthalmol Vis Sci 52(13):9503–9515

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  67. Carrasquero LM, Delicado EG, Bustillo D, Gutiérrez-Martín Y, Artalejo AR, Miras-Portugal MT (2009) P2X7 and P2Y13 purinergic receptors mediate intracellular calcium responses to BzATP in rat cerebellar astrocytes. J Neurochem 110(3):879–889

    Article  PubMed  CAS  Google Scholar 

  68. McIlvain HB, Ma L, Ludwig B, Manners MT, Martone RL, Dunlop J, Kaftan EJ, Kennedy JD, Whiteside GT (2010) Purinergic receptor-mediated morphological changes in microglia are transient and independent from inflammatory cytokine release. Eur J Pharmacol 643(2–3):202–210

    Article  PubMed  CAS  Google Scholar 

  69. Sattayaprasert P, Choi HB, Chongthammakun S, McLarnon JG (2005) Platelet-activating factor enhancement of calcium influx and interleukin-6 expression, but not production, in human microglia. Neuroinflammation 2(1):11

    Article  Google Scholar 

  70. Morigiwa K, Fukuda Y, Yamashita M (2000) Neurotransmitter ATP and cytokine release. Nihon Yakurigaku Zasshi 115(4):185–192

    Article  PubMed  CAS  Google Scholar 

  71. Inoue K, Hosoi J, Denda M (2007) Extracellular ATP has stimulatory effects on the expression and release of IL-6 via purinergic receptors in normal human epidermal keratinocytes. J Invest Dermatol 127(2):362–371

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (No. 31000497 and 31460266), Key Project of Chinese Ministry of Education (212154), Program for New Century Excellent Talents in University (NCET-13-1070), Scientific Research Foundation for Excellent Talents in Guizhou Province (2012–93). We are very grateful to the other staff of Department of Physiology. We also thank Wang Huan and Guo-Hui Bai (Central Laboratory, Zunyi Medical College) for their technique assistance in laser scanning confocal microscopy.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junwei Zeng or Yuanshou Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, J., Wang, G., Liu, X. et al. P2Y13 Receptor-Mediated Rapid Increase in Intracellular Calcium Induced by ADP in Cultured Dorsal Spinal Cord Microglia. Neurochem Res 39, 2240–2250 (2014). https://doi.org/10.1007/s11064-014-1426-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-014-1426-8

Keywords

Navigation