Skip to main content
Log in

Carvedilol Attenuates 6-Hydroxydopamine-Induced Cell Death in PC12 Cells: Involvement of Akt and Nrf2/ARE Pathways

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Oxidative stress is closely related to the pathogenesis of neurodegenerative disorders such as Parkinson’s disease. Carvedilol, a nonselective β-adrenergic receptor blocker with pleiotropic activity has been shown to exert neuroprotective effect due to its antioxidant property. However, the neuroprotective mechanism of carvedilol is still not fully uncovered. The phosphotidylinositol 3-kinase (PI3K)/Akt signaling pathway plays key role in cell survival and the nuclear factor erythroid 2–related factor 2 (Nrf2)/antioxidant response element (ARE) signaling pathway is the major cellular defense mechanism against oxidative stress. Here we investigated the effects of carvedilol on 6-hydroxydopamine (6-OHDA)-induced cell death as well as the Akt and Nrf2/ARE pathways in PC12 cells. We found that carvedilol significantly increased cell viability and decreased reactive oxygen species in PC12 cells exposed to 6-OHDA. Furthermore, carvedilol activated the Akt and Nrf2/ARE pathways in a concentration-dependent manner, and increased the protein levels of heme oxygenase-1(HO-1) and NAD(P)H quinone oxidoreductase-1(NQO-1), two downstream factors of the Nrf2/ARE pathway. In summary, our results indicate that carvedilol protects PC12 cells against 6-OHDA-induced neurotoxicity possibly through activating the Akt and Nrf2/ARE signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gaki GS, Papavassiliou AG (2014) Oxidative stress-induced signaling pathways implicated in the pathogenesis of Parkinson’s disease. Neuromol Med 16(2):217–230

    Article  CAS  Google Scholar 

  2. Butterfield DA, Castegna A, Lauderback CM, Drake J (2002) Evidence that amyloid beta-peptide-induced lipid peroxidation and its sequelae in Alzheimer’s disease brain contribute to neuronal death. Neurobiol Aging 23(5):655–664

    Article  PubMed  Google Scholar 

  3. Zoccarato F, Cavallini L, Bortolami S, Alexandre A (2007) Succinate modulation of H2O2 release at NADH: ubiquinone oxidoreductase (Complex I) in brain mitochondria. Biochem J 406(1):125–129

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Massaad CA (2011) Neuronal and vascular oxidative stress in Alzheimer’s disease. Curr Neuropharmacol 9(4):662–673

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Poon HF, Calabrese V, Scapagnini G, Butterfield DA (2004) Free radicals and brain aging. Clin Geriatr Med 20(2):329–359

    Article  PubMed  Google Scholar 

  6. Blandini F, Armentero MT, Martignoni E (2008) The 6-hydroxydopamine model: news from the past. Parkinsonism Relat Disord 14(Suppl 2):S124–S129

    Article  PubMed  Google Scholar 

  7. Simola N, Morelli M, Carta AR (2007) The 6-hydroxydopamine model of Parkinson’s disease. Neurotox Res 11(3–4):151–167

    Article  CAS  PubMed  Google Scholar 

  8. Paradies G, Petrosillo G, Paradies V, Ruggiero FM (2011) Mitochondrial dysfunction in brain aging: role of oxidative stress and cardiolipin. Neurochem Int 58(4):447–457

    Article  CAS  PubMed  Google Scholar 

  9. Chen G, Bower KA, Ma C, Fang S, Thiele CJ, Luo J (2004) Glycogen synthase kinase 3beta (GSK3beta) mediates 6-hydroxydopamine-induced neuronal death. FASEB J 18(10):1162–1164

    CAS  PubMed  Google Scholar 

  10. Camins A, Verdaguer E, Junyent F, Yeste-Velasco M, Pelegri C, Vilaplana J, Pallas M (2009) Potential mechanisms involved in the prevention of neurodegenerative diseases by lithium. CNS Neurosci Ther 15(4):333–344

    Article  CAS  PubMed  Google Scholar 

  11. Quiroz JA, Machado-Vieira R, Zarate CA Jr, Manji HK (2010) Novel insights into lithium’s mechanism of action: neurotrophic and neuroprotective effects. Neuropsychobiology 62(1):50–60

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Zheng L, Ishii Y, Tokunaga A, Hamashima T, Shen J, Zhao QL, Ishizawa S, Fujimori T, Nabeshima Y, Mori H, Kondo T, Sasahara M (2010) Neuroprotective effects of PDGF against oxidative stress and the signaling pathway involved. J Neurosci Res 88(6):1273–1284

    CAS  PubMed  Google Scholar 

  13. Calkins MJ, Johnson DA, Townsend JA, Vargas MR, Dowell JA, Williamson TP, Kraft AD, Lee JM, Li J, Johnson JA (2009) The Nrf2/ARE pathway as a potential therapeutic target in neurodegenerative disease. Antioxid Redox Signal 11(3):497–508

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. van Muiswinkel FL, Kuiperij HB (2005) The Nrf2-ARE signalling pathway: promising drug target to combat oxidative stress in neurodegenerative disorders. Curr Drug Targets CNS Neurol Disord 4(3):267–281

    Article  PubMed  Google Scholar 

  15. Savitz SI, Erhardt JA, Anthony JV, Gupta G, Li X, Barone FC, Rosenbaum DM (2000) The novel beta-blocker, carvedilol, provides neuroprotection in transient focal stroke. J Cereb Blood Flow Metab 20(8):1197–1204

    Article  CAS  PubMed  Google Scholar 

  16. Yaoita H, Sakabe A, Maehara K, Maruyama Y (2002) Different effects of carvedilol, metoprolol, and propranolol on left ventricular remodeling after coronary stenosis or after permanent coronary occlusion in rats. Circulation 105(8):975–980

    Article  CAS  PubMed  Google Scholar 

  17. Abreu RM, Santos DJ, Moreno AJ (2000) Effects of carvedilol and its analog BM-910228 on mitochondrial function and oxidative stress. J Pharmacol Exp Ther 295(3):1022–1030

    CAS  PubMed  Google Scholar 

  18. Lysko PG, Lysko KA, Yue TL, Webb CL, Gu JL, Feuerstein G (1992) Neuroprotective effects of carvedilol, a new antihypertensive agent, in cultured rat cerebellar neurons and in gerbil global brain ischemia. Stroke 23 (11):1630–1635; discussion 1635–1636

  19. Kumar A, Prakash A, Dogra S (2011) Neuroprotective effect of carvedilol against aluminium induced toxicity: possible behavioral and biochemical alterations in rats. Pharmacol Rep 63(4):915–923

    Article  CAS  PubMed  Google Scholar 

  20. Yoshioka T, Iwamoto N, Tsukahara F, Irie K, Urakawa I, Muraki T (2000) Anti-NO action of carvedilol in cell-free system and in vascular endothelial cells. Br J Pharmacol 129(7):1530–1535

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Macedo B, Magalhaes J, Batista AR, Saraiva MJ (2010) Carvedilol treatment reduces transthyretin deposition in a familial amyloidotic polyneuropathy mouse model. Pharmacol Res 62(6):514–522

    Article  CAS  PubMed  Google Scholar 

  22. Oettl K, Greilberger J, Zangger K, Haslinger E, Reibnegger G, Jurgens G (2001) Radical-scavenging and iron-chelating properties of carvedilol, an antihypertensive drug with antioxidative activity. Biochem Pharmacol 62(2):241–248

    Article  CAS  PubMed  Google Scholar 

  23. Ouyang Y, Chen Z, Tan M, Liu A, Chen M, Liu J, Pi R, Fang J (2013) Carvedilol, a third-generation beta-blocker prevents oxidative stress-induced neuronal death and activates Nrf2/ARE pathway in HT22 cells. Biochem Biophys Res Commun 441(4):917–922

    Article  CAS  PubMed  Google Scholar 

  24. Bang SY, Kim JH, Kim HY, Lee YJ, Park SY, Lee SJ, Kim Y (2012) Achyranthes japonica exhibits anti-inflammatory effect via NF-kappaB suppression and HO-1 induction in macrophages. J Ethnopharmacol 144(1):109–117

    Article  PubMed  Google Scholar 

  25. Zhang H, Mak S, Cui W, Li W, Han R, Hu S, Ye M, Pi R, Han Y (2011) Tacrine (2)-ferulic acid, a novel multifunctional dimer, attenuates 6-hydroxydopamine-induced apoptosis in PC12 cells by activating Akt pathway. Neurochem Int 59(7):981–988

    Article  CAS  PubMed  Google Scholar 

  26. Brubacher JL, Bols NC (2001) Chemically de-acetylated 2’,7’-dichlorodihydrofluorescein diacetate as a probe of respiratory burst activity in mononuclear phagocytes. J Immunol Methods 251(1–2):81–91

    Article  CAS  PubMed  Google Scholar 

  27. Jomova K, Vondrakova D, Lawson M, Valko M (2010) Metals, oxidative stress and neurodegenerative disorders. Mol Cell Biochem 345(1–2):91–104

    Article  CAS  PubMed  Google Scholar 

  28. Carreira RS, Monteiro P, Gon Alves LM, Providencia LA (2006) Carvedilol: just another beta-blocker or a powerful cardioprotector? Cardiovasc Hematol Disord Drug Targets 6(4):257–266

    Article  CAS  PubMed  Google Scholar 

  29. Li W, Yu SW, Kong AN (2006) Nrf2 possesses a redox-sensitive nuclear exporting signal in the Neh5 transactivation domain. J Biol Chem 281(37):27251–27263

    Article  CAS  PubMed  Google Scholar 

  30. Itoh K, Tong KI, Yamamoto M (2004) Molecular mechanism activating Nrf2-Keap1 pathway in regulation of adaptive response to electrophiles. Free Radic Biol Med 36(10):1208–1213

    Article  CAS  PubMed  Google Scholar 

  31. Dudek H, Datta SR, Franke TF, Birnbaum MJ, Yao R, Cooper GM, Segal RA, Kaplan DR, Greenberg ME (1997) Regulation of neuronal survival by the serine–threonine protein kinase Akt. Science 275(5300):661–665

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by National Natural Science Foundation of China/RGC Hong Kong Joint Research Scheme (No. 30731160617), Guangdong Provincial International Cooperation Project of Science & Technology (No. 2012B050300015) to R. Pi and The Program for Science and Technology of Wuhan (No. 2013062301010816) to L. Wang.

Conflict of interest

No.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rongbiao Pi or Wei Shen.

Additional information

Lan Wang and Rikang Wang have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Wang, R., Jin, M. et al. Carvedilol Attenuates 6-Hydroxydopamine-Induced Cell Death in PC12 Cells: Involvement of Akt and Nrf2/ARE Pathways. Neurochem Res 39, 1733–1740 (2014). https://doi.org/10.1007/s11064-014-1367-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-014-1367-2

Keywords

Navigation