Skip to main content

Advertisement

Log in

Hyperbaric Oxygen Therapy Ameliorates Local Brain Metabolism, Brain Edema and Inflammatory Response in a Blast-Induced Traumatic Brain Injury Model in Rabbits

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Many studies suggest that hyperbaric oxygen therapy (HBOT) can provide some clinically curative effects on blast-induced traumatic brain injury (bTBI). The specific mechanism by which this occurs still remains unknown, and no standardized time or course of hyperbaric oxygen treatment is currently used. In this study, bTBI was produced by paper detonators equivalent to 600 mg of TNT exploding at 6.5 cm vertical to the rabbit’s head. HBO (100 % O2 at 2.0 absolute atmospheres) was used once, 12 h after injury. Magnetic resonance spectroscopy was performed to investigate the impact of HBOT on the metabolism of local injured nerves in brain tissue. We also examined blood–brain barrier (BBB) integrity, brain water content, apoptotic factors, and some inflammatory mediators. Our results demonstrate that hyperbaric oxygen could confer neuroprotection and improve prognosis after explosive injury by promoting the metabolism of local neurons, inhibiting brain edema, protecting BBB integrity, decreasing cell apoptosis, and inhibiting the inflammatory response. Furthermore, timely intervention within 1 week after injury might be more conducive to improving the prognosis of patients with bTBI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Huang E, Ngo M, Yee S, Held L, Norman K, Scremin AM, Scremin O (2013) Repeated blast exposure alters open field behavior recorded under low illumination. Brain Res 1529:125–133

    Article  CAS  PubMed  Google Scholar 

  2. Ling G, Bandak F, Armonda R, Grant G, Ecklund J (2009) Explosive blast neurotrauma. J Neurotrauma 26:815–825

    Article  PubMed  Google Scholar 

  3. Davenport ND, Lim KO, Armstrong MT, Sponheim SR (2012) Diffuse and spatially variable white matter disruptions are associated with blast-related mild traumatic brain injury. Neuroimage 59:2017–2024

    Article  PubMed  Google Scholar 

  4. Armonda RA, Bell RS, Vo AH, Ling G, DeGraba TJ, Crandall B, Ecklund J, Campbell WW (2006) Wartime traumatic cerebral vasospasm: recent review of combat casualties. Neurosurgery 59:1215–1225; (discussion 1225)

    Google Scholar 

  5. Tang X, Liu KJ, Ramu J, Chen Q, Li T, Liu W (2010) Inhibition of gp91(phox) contributes towards normobaric hyperoxia afforded neuroprotection in focal cerebral ischemia. Brain Res 1348:174–180

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Edwards ML (2010) Hyperbaric oxygen therapy. Part 1: history and principles. J Vet Emerg Crit Care 20:284–288

    Article  Google Scholar 

  7. Voigt C, Forschler A, Jaeger M, Meixensberger J, Kuppers-Tiedt L, Schuhmann MU (2008) Protective effect of hyperbaric oxygen therapy on experimental brain contusions. Acta Neurochir Suppl 102:441–445

    Article  PubMed  Google Scholar 

  8. Palzur E, Zaaroor M, Vlodavsky E, Milman F, Soustiel JF (2008) Neuroprotective effect of hyperbaric oxygen therapy in brain injury is mediated by preservation of mitochondrial membrane properties. Brain Res 1221:126–133

    Article  CAS  PubMed  Google Scholar 

  9. Rockswold SB, Rockswold GL, Defillo A (2007) Hyperbaric oxygen in traumatic brain injury. Neurol Res 29:162–172

    Article  PubMed  Google Scholar 

  10. Qian J, Qian B, Lei H (2013) Reversible loss of N-acetylaspartate after 15-min transient middle cerebral artery occlusion in rat: a longitudinal study with in vivo proton magnetic resonance spectroscopy. Neurochem Res 38:208–217

    Article  CAS  PubMed  Google Scholar 

  11. Sidaros A, Herning M (2007) Magnetic resonance imaging in severe traumatic brain injury. Ugeskr Laeg 169:214–216

    PubMed  Google Scholar 

  12. Kamnaksh A, Kovesdi E, Kwon SK, Wingo D, Ahmed F, Grunberg NE, Long J, Agoston DV (2011) Factors affecting blast traumatic brain injury. J Neurotrauma 28:2145–2153

    Article  PubMed  Google Scholar 

  13. Yong-Ming Z, Jia-Chuan L, Yan-Yan Y, Wen-Jiang S, Hong T, Bing-Cang L, Liang-Chao Z (2012) Effective protection of rabbits’ explosive brain injury through blocking gap junction communication. Afr Health Sci 12:552–556

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Soares DP, Law M (2009) Magnetic resonance spectroscopy of the brain: review of metabolites and clinical applications. Clin Radiol 64:12–21

    Article  CAS  PubMed  Google Scholar 

  15. Li CX, Wang Y, Gao H, Pan WJ, Xiang Y, Huang M, Lei H (2008) Cerebral metabolic changes in a depression-like rat model of chronic forced swimming studied by ex vivo high resolution 1H magnetic resonance spectroscopy. Neurochem Res 33:2342–2349

    Article  CAS  PubMed  Google Scholar 

  16. Brugger S, Davis JM, Leucht S, Stone JM (2011) Proton magnetic resonance spectroscopy and illness stage in schizophrenia—a systematic review and meta-analysis. Biol Psychiatry 69:495–503

    Article  PubMed  Google Scholar 

  17. Ren C, Gao X, Niu G, Yan Z, Chen X, Zhao H (2008) Delayed postconditioning protects against focal ischemic brain injury in rats. PLoS One 3:e3851

    Article  PubMed Central  PubMed  Google Scholar 

  18. Yang DY, Pan HC, Chen CJ, Cheng FC, Wang YC (2007) Effects of tissue plasminogen activator on cerebral microvessels of rats during focal cerebral ischemia and reperfusion. Neurol Res 29:274–282

    Article  CAS  PubMed  Google Scholar 

  19. Magnuson J, Leonessa F, Ling GS (2012) Neuropathology of explosive blast traumatic brain injury. Curr Neurol Neurosci Rep 12:570–579

    Article  PubMed  Google Scholar 

  20. Dewall J (2010) The ABCs of TBI. Evidence-based guidelines for adult traumatic brain injury care. J Emerg Med Serv 35:54-61; quiz 63

    Google Scholar 

  21. Ling GS, Ecklund JM (2011) Traumatic brain injury in modern war. Curr Opin Anaesthesiol 24:124–130

    Article  PubMed  Google Scholar 

  22. Liu Z, Jiao QF, You C, Che YJ, Su FZ (2006) Effect of hyperbaric oxygen on cytochrome C, Bcl-2 and Bax expression after experimental traumatic brain injury in rats. Chin J Traumatol 9:168–174

    CAS  PubMed  Google Scholar 

  23. Niklas A, Brock D, Schober R, Schulz A, Schneider D (2004) Continuous measurements of cerebral tissue oxygen pressure during hyperbaric oxygenation–HBO effects on brain edema and necrosis after severe brain trauma in rabbits. J Neurol Sci 219:77–82

    Article  CAS  PubMed  Google Scholar 

  24. Wright JK, Zant E, Groom K, Schlegel RE, Gilliland K (2009) Case report: treatment of mild traumatic brain injury with hyperbaric oxygen. Undersea Hyperb Med 36:391–399

    PubMed  Google Scholar 

  25. Rockswold SB, Rockswold GL, Zaun DA, Zhang X, Cerra CE, Bergman TA, Liu J (2010) A prospective, randomized clinical trial to compare the effect of hyperbaric to normobaric hyperoxia on cerebral metabolism, intracranial pressure, and oxygen toxicity in severe traumatic brain injury. J Neurosurg 112:1080–1094

    Article  CAS  PubMed  Google Scholar 

  26. Edwards ML (2010) Hyperbaric oxygen therapy. Part 2: application in disease. J Vet Emerg Crit Care 20:289–297

    Article  Google Scholar 

  27. Harch PG, Kriedt C, Van Meter KW, Sutherland RJ (2007) Hyperbaric oxygen therapy improves spatial learning and memory in a rat model of chronic traumatic brain injury. Brain Res 1174:120–129

    Article  CAS  PubMed  Google Scholar 

  28. Wang GH, Zhang XG, Jiang ZL, Li X, Peng LL, Li YC, Wang Y (2010) Neuroprotective effects of hyperbaric oxygen treatment on traumatic brain injury in the rat. J Neurotrauma 27:1733–1743

    Article  PubMed  Google Scholar 

  29. Marx RE, Ehler WJ, Tayapongsak P, Pierce LW (1990) Relationship of oxygen dose to angiogenesis induction in irradiated tissue. Am J Surg 160:519–524

    Article  CAS  PubMed  Google Scholar 

  30. Ballabh P, Braun A, Nedergaard M (2004) The blood–brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis 16:1–13

    Article  CAS  PubMed  Google Scholar 

  31. Lee JH, Cui HS, Shin SK, Kim JM, Kim SY, Lee JE, Koo BN (2013) Effect of propofol post-treatment on blood–brain barrier integrity and cerebral edema after transient cerebral ischemia in rats. Neurochem Res 38:2276–2286

    Article  CAS  PubMed  Google Scholar 

  32. Rosenthal RE, Silbergleit R, Hof PR, Haywood Y, Fiskum G (2003) Hyperbaric oxygen reduces neuronal death and improves neurological outcome after canine cardiac arrest. Stroke 34:1311–1316

    Article  PubMed  Google Scholar 

  33. Hollin SA, Sukoff MH, Jacobson JH 2nd (1968) The protective effect of hyperbaric oxygenation in experimentally produced cerebral edema and compression. Prog Brain Res 30:479–489

    Article  CAS  PubMed  Google Scholar 

  34. Gill AL, Bell CN (2004) Hyperbaric oxygen: its uses, mechanisms of action and outcomes. QJM 97:385–395

    Article  CAS  PubMed  Google Scholar 

  35. Marino S, Zei E, Battaglini M, Vittori C, Buscalferri A, Bramanti P, Federico A, De Stefano N (2007) Acute metabolic brain changes following traumatic brain injury and their relevance to clinical severity and outcome. J Neurol Neurosurg Psychiatry 78:501–507

    Article  PubMed Central  PubMed  Google Scholar 

  36. McLean MA, Cross JJ (2009) Magnetic resonance spectroscopy: principles and applications in neurosurgery. Br J Neurosurg 23:5–13

    Article  PubMed  Google Scholar 

  37. Lin JW, Tsai JT, Lee LM, Lin CM, Hung CC, Hung KS, Chen WY, Wei L, Ko CP, Su YK, Chiu WT (2008) Effect of hyperbaric oxygen on patients with traumatic brain injury. Acta Neurochir Suppl 101:145–149

    Article  CAS  PubMed  Google Scholar 

  38. Wennersten A, Holmin S, Mathiesen T (2003) Characterization of Bax and Bcl-2 in apoptosis after experimental traumatic brain injury in the rat. Acta Neuropathol 105:281–288

    CAS  PubMed  Google Scholar 

  39. Kang GH, Yan BC, Cho GS, Kim WK, Lee CH, Cho JH, Kim M, Kang IJ, Won MH, Lee JC (2012) Neuroprotective effect of fucoidin on lipopolysaccharide accelerated cerebral ischemic injury through inhibition of cytokine expression and neutrophil infiltration. J Neurol Sci 318:25–30

    Article  CAS  PubMed  Google Scholar 

  40. Chamorro A, Hallenbeck J (2006) The harms and benefits of inflammatory and immune responses in vascular disease. Stroke 37:291–293

    Article  PubMed Central  PubMed  Google Scholar 

  41. Samson Y, Lapergue B, Hosseini H (2005) Inflammation and ischaemic stroke: current status and future perspectives. Revue Neurol 161:1177–1182

    Article  CAS  Google Scholar 

  42. Hedges JC, Singer CA, Gerthoffer WT (2000) Mitogen-activated protein kinases regulate cytokine gene expression in human airway myocytes. Am J Respir Cell Mol Biol 23:86–94

    Article  CAS  PubMed  Google Scholar 

  43. Emerich DF, Dean RL 3rd, Bartus RT (2002) The role of leukocytes following cerebral ischemia: pathogenic variable or bystander reaction to emerging infarct? Exp Neurol 173:168–181

    Article  PubMed  Google Scholar 

  44. Witko-Sarsat V, Rieu P, Descamps-Latscha B, Lesavre P, Halbwachs-Mecarelli L (2000) Neutrophils: molecules, functions and pathophysiological aspects. Lab Invest 80:617–653

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by research Grants from the Nature Science Youth Funding of Anhui Province (1208085QH171) and Nanjing Military Region Fund Project (10MB009). We also thank Professor Bingchang Li (Institute of Battle Surgical Research, Third Military Medicine University) for his support while creating our animal model and Daniel Smerin for his manuscript editing.

Conflict of interest

We have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongming Zhang or Jiachuan Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Yang, Y., Tang, H. et al. Hyperbaric Oxygen Therapy Ameliorates Local Brain Metabolism, Brain Edema and Inflammatory Response in a Blast-Induced Traumatic Brain Injury Model in Rabbits. Neurochem Res 39, 950–960 (2014). https://doi.org/10.1007/s11064-014-1292-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-014-1292-4

Keywords

Navigation