Skip to main content
Log in

Mangiferin Antagonizes Rotenone: Induced Apoptosis Through Attenuating Mitochondrial Dysfunction and Oxidative Stress in SK-N-SH Neuroblastoma Cells

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

In the present study, using a human neuroblastoma SK-N-SH cells, we explored antioxidant, mitochondrial protective and antiapoptotic properties of mangiferin against rotenone-mediated cytotoxicity. SK-N-SH cells are divided into four experimental groups based on 3-(4,5-dimethyl2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay—untreated cells, cells incubated with rotenone (100 nM), cells treated with mangiferin (20 μg) (pretreatment 4 h before) + rotenone (100 nM) and mangiferin alone treated. 24 h after treatment with rotenone and 28 h after treatment with mangiferin, levels of ATP thiobarbituricacid reactive substances and reduced glutathione and activities of enzymatic antioxidants including superoxide dismutase, catalase and glutathione peroxidise were measured. Finally mitochondrial transmembrane potential and expressions of apoptotic protein were also analysed. Pre-treatment with mangiferin significantly enhanced cell viability, ameliorated decrease in mitochondrial membrane potential and decreased rotenone-induced apoptosis in the cellular model of Parkinson’s disease. Moreover oxidative imbalance induced by rotenone was partially rectified by mangiferin. Our results indicated that anti-apoptotic properties of this natural compound due to its antioxidant and mitochondrial protective function protect rotenone induced cytotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Shimizu K, Matsubara K, Ohtaki K, Shiono H, Shimizu K, Matsubara K, Ohtaki K et al (2003) Paraquat leads to dopaminergic neural vulnerability in organotypic midbrain culture. Neurosci Res 46:523–532

    Article  PubMed  CAS  Google Scholar 

  2. Kim HJ, Park HJ, Park HK, Chung JH (2009) Tranexamic acid protects against rotenone induced apoptosis in human neuroblastoma SH-SY5Y cells. Toxicology 262:171–174

    Article  PubMed  CAS  Google Scholar 

  3. Muthaiyah B, Essa MM, Chauhan V, Chauhan A (2011) Protective effects of walnut extract against amyloid beta peptide-induced cell death and oxidative stress in PC12 cells. Neurochem Res 36(11):2096–2103

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  4. Essa MM, Vijayan RK, Castellano-Gonzalez G, Memon MA, Braidy N, Guillemin GJ (2012) Neuroprotective effect of natural products against Alzheimer’s disease. Neurochem Res 37(9):1829–1842

    Article  PubMed  CAS  Google Scholar 

  5. Braidy N, Selvaraju S, Essa MM, Vaishnav R, Al-Adawi S, Al-Asmi A, Al-Senawi H, Abd Alrahman Alobaidy A, Lakhtakia R, Guillemin GJ (2013) Neuroprotective effects of a variety of pomegranate juice extracts against MPTP-induced cytotoxicity and oxidative stress in human primary neurons. Oxid Med Cell Longev 2013:685909. doi: 10.1155/2013/685909

  6. Tamilselvam K, Braidy N, Manivasagam T, Essa MM, Prasad NR, Karthikeyan S, Thenmozhi AJ, Selvaraju S, Guillemin GJ (2013) Neuroprotective effects of hesperidin, a plant flavanone, on rotenone-induced oxidative stress and apoptosis in a cellular model for Parkinson’s disease. Oxid Med Cell Longev 2013:102741. doi:10.1155/2013/102741

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  7. Sánchez GM, Re L, Giuliani A, Núñez-Sellés AJ, Davison GP, León-Fernández OS et al (2000) Protective effects of Mangifera indica L. extract, mangiferin and selected antioxidants against TPA-induced biomolecules oxidation and peritoneal macrophage activation in mice. Pharmacol Res 42:565–573

    Article  PubMed  Google Scholar 

  8. Lemus-Molina Y, Sánchez-Gómez MV, Delgado-Hernández R, Matute C (2009) Mangifera indica L. extract attenuates glutamate-induced neurotoxicity on rat cortical neurons. Neurotoxicology 30:1053–1058

    Article  PubMed  CAS  Google Scholar 

  9. Gottlieb M, Leal-Campanario R, Campos-Esparza MR, Sanchez-Gomez MV, Alberdi E, Arranz A et al (2006) Neuroprotection by two polyphenols following excitotoxicity and experimental ischemia. Neurobiol Dis 2:374–386

    Article  CAS  Google Scholar 

  10. Karthikeyan S, Kanimozhi G, Prasad NR, Mahalakshmi R (2011) Radiosensitizing effect of ferulic acid on human cervical carcinoma cells in vitro. Toxicol In Vitro 25:1366–1375

    Article  PubMed  CAS  Google Scholar 

  11. Niehaus WG Jr, Samuelsson B (1968) Formation of malonaldehyde from phospholipid arachidonate during microsomal lipid peroxidation. Eur J Biochem 6(1):126–130

    Article  PubMed  CAS  Google Scholar 

  12. Del Maestro RF, McDonald W (1985) Oxidative enzymes in tissue homogenates. In: Greenwald RA (ed) Handbook of methods for oxygen radical research. CRC Press, Boca Raton, pp 291–296

    Google Scholar 

  13. Aebi HE (1983) Catalase. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Verlag Chemie, Weinhern, pp 273–286

    Google Scholar 

  14. Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG (1973) Selenium: biochemical role as a component of glutathione peroxidase. Science 179:588–590

    Article  PubMed  CAS  Google Scholar 

  15. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Article  PubMed  CAS  Google Scholar 

  16. Liberatore GT, Jackson-Lewis V, Vukosavic S et al (1999) Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease. Nat Med 5:1403–1409

    Article  PubMed  CAS  Google Scholar 

  17. Levites Y, Amit T, Mandel S, Youdim MB (2003) Neuroprotection and neurorescue against Abeta toxicity and PKC-dependent release of nonamyloidogenic soluble precursor protein by green tea polyphenol (−)-epigallocatechin-3-gallate. FASEB J. 17:952–954

    PubMed  CAS  Google Scholar 

  18. Chung W, Miranda CL, Maier CS (2007) Epigallocatechin gallate (EGCG) potentiates the cytotoxicity of rotenone in neuroblastoma SH-SY5Y cells. Brain Res 1176:133–142

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Turrens JF (1997) Superoxide production by the mitochondrial respiratory chain. Biosci Rep 17:3–8

    Article  PubMed  CAS  Google Scholar 

  20. Sherer T, Betarbetm R, Stout AK, Lund S, Baptista M, Panov AV, Cookson MR, Greenamyre JT (2002) An in vitro model of Parkinson’s disease: linking mitochondrial impairment to altered alpha-synuclein metabolism and oxidative damage. J Neurosci 22:7006–7015

    PubMed  CAS  Google Scholar 

  21. Cassarino DS, Fall CP, Swerdlow RH, Smith TS, Halvorsen EM, Millar SW, Parks JP, Parker WD, Bennett JP (1997) Elevated reactive oxygen species and antioxidant enzyme activities in animal and cellular models of Parkinson’s disease. Biochim Biophys Acta 1362:77–86

    Article  PubMed  CAS  Google Scholar 

  22. Kurosaki R, Muramatsu Y, Kato H, Araki T (2004) Biochemical, behavioral and immunohistochemical alterations in MPTP-treated mouse model of Parkinson’s disease. Pharmacol Biochem Behav 78:143–153

    Article  PubMed  CAS  Google Scholar 

  23. Panov A, Dikalov S, Shalbuyeva N, Taylor G, Sherer T, Greenamyre JT et al (2005) Rotenone model of Parkinson disease: multiple brain mitochondria dysfunctions after short term systemic rotenone intoxication. J Biol Chem 280:42026–42035

    Article  PubMed  CAS  Google Scholar 

  24. Tatton WG, Olanow CW (1999) Apoptosis in neurodegenerative diseases: the role of mitochondria. Biochim Biophys Acta 1410:195–213

    Article  PubMed  CAS  Google Scholar 

  25. Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA, Yuan J et al (2000) Caspase-12 mediates endoplasmic reticulum specific apoptosis and cytotoxicity by amyloid-β. Nature 403:98–103

    Article  PubMed  CAS  Google Scholar 

  26. Kweon GR, Marks JD, Krencik R, Leung EH, Schumacker PT, Hyland K et al (2004) Distinct mechanisms of neurodegeneration induced by chronic complex I inhibition in dopaminergic and non-dopaminergic cells. J Biol Chem 279:51783–51792

    Article  PubMed  CAS  Google Scholar 

  27. Hartley A, Stone JM, Heron C, Cooper JM, Schapira AHV (1994) Complex I inhibitors induce dose-dependent apoptosis in PC12 cells: relevance to Parkinson’s disease. J Neurochemistry 63(5):1987–1990

    Article  CAS  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thamilarasan Manivasagam or Musthafa Mohamed Essa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kavitha, M., Manivasagam, T., Essa, M.M. et al. Mangiferin Antagonizes Rotenone: Induced Apoptosis Through Attenuating Mitochondrial Dysfunction and Oxidative Stress in SK-N-SH Neuroblastoma Cells. Neurochem Res 39, 668–676 (2014). https://doi.org/10.1007/s11064-014-1249-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-014-1249-7

Keywords

Navigation