Skip to main content
Log in

Evaluation of Potential Antidepressant-Like Activity of Chalcone-1203 in Various Murine Experimental Depressant Models

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Two classic animal behavior despair tests-the forced swimming test (FST) and the tail suspension test (TST) were used to evaluate antidepressant-like activity of a new chalcone compound, chalcone-1203 in mice. It was observed that chalcone-1203 at dose of 1, 5, and 10 mg/kg significantly reduced the immobility time in the FST and TST in mice 30 min after treatment. In addition, chalcone-1203 was found to exhibit significant oral activity in the FST in mice. It also produced a reduction in the ambulation in the open-field test in mice not previously habituated to the arena, but no effect in the locomotor activity in mice previously habituated to the open-field. The main monoamine neurotransmitters and their metabolites in mouse brain regions were also simultaneously determined by HPLC–ECD. It was found that chalcone-1203 significantly increased the concentrations of the main neurotransmitters 5-HT and NE in the hippocampus, hypothalamus and cortex. Chalcone-1203 also significantly reduced the ratio of 5-HIAA/5-HT in the hippocampus and cortex, shown down 5-HT metabolism compared with mice treated with stress vehicle. In conclusion, chalcone-1203 produced significant antidepressant-like activity, and the mechanism of action may be due to increased 5-HT and NE in the mouse hippocampus and cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Archer J (1973) Tests for emotionality in rats and mice: a review. Anim Behav 21:205–235

    Article  CAS  PubMed  Google Scholar 

  2. An L, Zhang YZ, Jiang N, Liu XM, Zhao N, Yuan L, Li YF (2008) Role for serotonin in the antidepressant-like effect of a flavonoid extract of Xiaobuxin-Tang. Pharmacol Biochem Behav 89:572–580

    Article  CAS  PubMed  Google Scholar 

  3. Bhattamisra SK, Khanna VK, Agrawal AK, Singh PN, Singh SK (2008) Antidepressant activity of standardised extract of Marsilea minuta Linn. J Ethnopharmacol 117:51–57

    Article  PubMed  Google Scholar 

  4. Borsini F, Voltera G, Meli AA (1986) Dose the behavioral ‘despair’ test measure ‘despair’. Physiol Behav 38:385–389

    Article  CAS  PubMed  Google Scholar 

  5. Brown S, Griffiths LA (1983) Metabolism and excretion of butein, 2′,3,4-trihydroxychalcone, 3-O-methyltutein, 4-O-methylbutein and 2′,4′,4-trihydroxychalcone in the rat. Xenobiotica 13:669–682

    Article  CAS  PubMed  Google Scholar 

  6. Chen Y, Kong LD, Xia X, Kung HF, Zhang L (2005) Behavioral and biochemical studies of total furocoumarins from seeds of Psoralea corylifolia in the forced swimming test in mice. J Ethnopharmacol 96:451–459

    Article  CAS  PubMed  Google Scholar 

  7. Cheng ZJ, Kuo SC, Chan SC, Ko FN, Teng CM (1998) Antioxidant properties of butein isolated from Dalbergia odorifera. Biochim Biphys Acta 1392:291–299

    CAS  Google Scholar 

  8. Commissiong W (1985) Monoamine metabolites: their relationship and lack of relationship to monoaminergic neuronal activity. Biochem Pharmacol 34:1127–1231

    Article  CAS  PubMed  Google Scholar 

  9. Connor TJ, Kelly JP, Leonard BE (1997) Forced swim test-induced neurochemical endocrine, and immune changes in the rat. Pharmacol Biochem Behav 58:961–967

    Article  CAS  PubMed  Google Scholar 

  10. Elliott PJ, Chan J, Parker YM (1986) Behavioral effects of neurotensin in the open field: structure activity studies. Brain Res 381:259–265

    Article  CAS  PubMed  Google Scholar 

  11. Galdino PM, Nascimento MV, Sampaio BL, Ferreira RN, Paula JR, Costa EA (2009) Antidepressant-like effect of Lafoensia pacari A. St.-Hil. Ethanolic extract and fractions in mice. J Ethnopharmacol 124:581–585

    Article  CAS  PubMed  Google Scholar 

  12. Haier RJ, Buchsbaum MS, DeMet E, Wu J (1988) Biological vulnerability to depression: replication of MAO and evoked potentials as risk factors. Neuropsychobiology 20:62–66

    Article  CAS  PubMed  Google Scholar 

  13. Kaster MP, Rosa AO, Rosso MM, Goulart EC, Santos AR, Rodrigues AL (2004) Adenosine administration produces an antidepressant-like effect in mice: evidence for the involvement of A1 and A2A receptors. Neurosci Lett 355:21–24

    Article  CAS  PubMed  Google Scholar 

  14. Lee HW, Ji HY, Lee HI, Kim HK, Sohn DH, Kim YC, Chung HT, Lee HS (2004) Determination of butein in tat serum by high performance liquid chromatography. J Pharm Biomed Anal 34:227–231

    Article  CAS  PubMed  Google Scholar 

  15. Lee SH, Seo GS, Kim JY, Jin XY, Kim H-D, Sohn DH (2006) Heme oxygenase 1 mediates anti-inflammatory effects of 2,4,6-tris(methoxymethoxy)chalcone. Eur J Pharmacol 532:178–186

    Article  CAS  PubMed  Google Scholar 

  16. Linthorst AC, Penalva RG, Flachskamm C, Holsboer F, Reul JM (2002) Forced swim stress activates rat hippocampal serotonergic neurotransmission involving acorticotropin-releasing hormone receptor-dependent mechanism. Eur J Neurosci 16:2441–2452

    Article  PubMed  Google Scholar 

  17. Lopez AD, Murray CC (1998) The global burden of disease, 1990–2020. Nat Med 4:1241–1243

    Article  CAS  PubMed  Google Scholar 

  18. Machado DG, Bettio LE, Cunha MP, Santos AR, Pizzolatti MG, Briqhente IM, Rodriques AL (2008) Antidepressant-like effect of rutin isolated from the ethanolic extract from Schinus molle L. in mice: evidence for the involvement of the serotonergic and noradrenergic systems. Eur J Pharmacol 587:163–168

    Article  CAS  PubMed  Google Scholar 

  19. Miura H, Naoi M, Nakahara D, Ohta T, Nagatsu T (1996) Effects of moclobemide on forced-swimming stress and brain monoamine levels in mice. Pharmacol Biochem Behav 53:469–475

    Article  CAS  PubMed  Google Scholar 

  20. Nakazawa T, Yasuda T, Ueda J, Ohsawa K (2003) Antidepressant-like effects of apigenin and 2,4,5-trimethoxycin-namic acid from Perilla frutescens in the forced swimming test. Biol Pharm Bull 26:474–480

    Article  CAS  PubMed  Google Scholar 

  21. Paulke A, Nöldner M, Schubert-Zsilavecz M, Wurqlics M (2008) St. John’s wort flavonoids and their metabolites show antidepressant activity and accumulate in brain after multiple oral doses. Pharmazie 63:296–302

    CAS  PubMed  Google Scholar 

  22. Porsolt RD (1981). Behavioral despair test. In: Enna SJ, Malick JB and Richelson E (eds) Antidepressants: neurochemical, behavioral, and clinical perspectives. Raven Press, New York, pp 129–139

  23. Sakakibara H, Ishida K, Grundmann O, Nakajima J, Seo S, Butterweck V, Minami Y, Saito S, Kawai Y, Nakaya Y, Terao J (2006) Antidepressant effect of extracts from Ginkgo biloba leaves in behavioral models. Biol Pharm Bull 29:1767–1770

    Article  CAS  PubMed  Google Scholar 

  24. Schwarting R, Huston J (1992) Behavioral concomitants of regional changes in the brain’s biogenic amines after apomorphine and amphetamine. Pharmacol Biochem Behav 41:675–682

    Article  CAS  PubMed  Google Scholar 

  25. Steru L, Chermat R, Thierry B, Simon P (1985) The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology 85:367–370

    Article  CAS  PubMed  Google Scholar 

  26. Stahl SM (1998) Basic psychopharmacology of antidepressants, part 1: antidepressants have seven distinct mech-anisms of action. J Clin Psychiatry 59(suppl 4):5–14

    CAS  PubMed  Google Scholar 

  27. Sui X, Quan YC, Chang Y, Zhang RP, Xu YF, Guan LP (2012) Synthesis and studies on antidepressant activity 2′,4′,6′-trihydroxychalcone derivatives. Med Chem Res 21:1290–1296

    Article  CAS  Google Scholar 

  28. Tian Y (2010) Research progress of clinical antidepressant drugs. J China Tradit Chin Med Inf 2:175

    Google Scholar 

  29. Thase MS (2003) Evaluating antidepressant therapies: remission as the optimal outcome. J Clin Psychiatry 64(Suppl 13):18–25

    CAS  PubMed  Google Scholar 

  30. Thaes ME, Corya SA, Osuntokun O, Case M, Henley DB, Sanger TM, Watson SB, Dubé S (2007) A randomized, double-blind comparison of olanzapine/fluoxetine combination, olanzapine, and fluoxetine in treatment-resistant major depressive disorder. J Clin Psychiatry 68:224–226

    Article  Google Scholar 

  31. Wang WX, Hu XY, Zhao ZY, Liu P, Hu Y, Zhou J, Zhou D, Wang Z, Guo D, Guo H (2008) Antidepressant-like effects of liquiritin and isoliquiritin from Glycyrrhiza uralensis in the forced swimming test and tail suspension test in mice. Prog Neuro Psychopharmocol Biol Psychiatry 32:1179–1184

    Article  CAS  Google Scholar 

  32. Winans KA, King DA, Rao V, Bertozzi CR (1999) A Chemically synthesized version of the insect antibacterial glycopeptide, diptericin disrupts bacterial membrane integrity. Biochemistry 38:11700–11710

    Article  CAS  PubMed  Google Scholar 

  33. Willner P, Mitchell PJ (2002) The validity of animal models of predisposition to depression. Behav Pharmacol 13:169–188

    Article  CAS  PubMed  Google Scholar 

  34. Woo SW, Lee SH, Kang HC, Paik EJ, Zhao YZ, Kim YC, Sohn DH (2003) Butein suppresses myofibroblastic differentiation of rat hepatic stellate cells in primary culture. J Pharm Phamacol 55:347–352

    Article  CAS  Google Scholar 

  35. Yi LT, Li JM, Li YC, Pan Y, Xu Q, Kong LD (2008) Antidepressant-like behavioral and neurochemical effects of the citrus-associated chemical apigenin. Life Sci 82:741–751

    Article  CAS  PubMed  Google Scholar 

  36. Zhao DH, Sui X, YL QU, Yang LY, Wang X, Guan LP (2011) Synthesis and studies on antidepressant effect of 5, 7-dihydroxyflavanone derivatives. Asian J Chem 23:1129–1132

    CAS  Google Scholar 

  37. Zhao DH, Zhang YZ, Zheng ZH (2010) Synthesis and studies on antidepressant effect of 2′, 4′-dihyoxylchalcone. Shi Zhen Med Mater Med Res 21:1115–1116

    CAS  Google Scholar 

  38. Zhao LM, Jin HS, Wan LJ, Zhang LM (2011) General and highly -regioselective zinc-mediated prenylation of aldehydes and ketones. J Org Chem 76:1831–1837

    Article  CAS  PubMed  Google Scholar 

  39. Zangen A, Overstreet D, Yadid Gal (1999) Increased catecholamine levels in specific brain regions of a rat model of depression: normalization by chronic antidepressant treatment. Brain Res 824:243–250

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 30960458 and 21365023), the Natural Science Foundation of Zhejiang Province of China (No. LY12C19005) and Zhejiang Marine Biotechnology Innovation Team (ZMBIT) (No. 2010R50029).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li-Ping Guan or Si-Hong Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guan, LP., Tang, LM., Pan, CY. et al. Evaluation of Potential Antidepressant-Like Activity of Chalcone-1203 in Various Murine Experimental Depressant Models. Neurochem Res 39, 313–320 (2014). https://doi.org/10.1007/s11064-013-1224-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-013-1224-8

Keywords

Navigation