Skip to main content

Advertisement

Log in

An Acute Glutamate Exposure Induces Long-Term Down Regulation of GLAST/EAAT1 Uptake Activity in Cultured Bergmann Glia Cells

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Glutamate, the major excitatory neurotransmitter in the vertebrate brain, is a potent neurotoxin therefore its extracellular levels have to be tightly regulated by means of sodium-dependent glutamate uptake systems of the slc1A family. The glial glutamate/aspartate transporter (GLAST/EAAT1) and the glutamate transporter 1 carry most of the uptake activity in cerebellum and in the forebrain, respectively. In the cerebellar cortex, GLAST is profusely expressed in Bergmann glia cells, which completely enwrap the parallel fiber-Purkinje cells synapses. Glutamate exposure in these cells, down regulates the activity as well as the expression levels of this transporter. In order to characterize the persistence of a single glutamate exposure, we followed the [3H]-d-aspartate uptake activity as a function of time after the removal of the glutamatergic stimulus. We were able to demonstrate that a single 30 min exposure to glutamate reduces the uptake activity for up to 3 h. This effect is dose-dependent and it is not reproduced neither by ionotropic nor metabotropic glutamate receptors agonists. In contrast, transporter specific ligands such as d-aspartate or l-(−)-threo-3-Hydroxyaspartic acid fully reproduce the glutamate effect. Equilibrium binding experiments revealed a decrease in [3H]-d-aspartate Bmax without a significant change in affinity, clearly suggesting that a reduction in the availability of plasma membrane glutamate transporters is the molecular basis of this effect. Interestingly, neither Glast mRNA nor its protein levels were significantly reduced upon the single glutamate exposure. Taken together, these results favor the notion of a transporter-mediated tight control of the uptake process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Curtis DR, Johnston GA (1974) Amino acid transmitters in the mammalian central nervous system. Ergebnisse der Physiologie, biologischen Chemie und experimentellen Pharmakologie 69:97–188

    CAS  PubMed  Google Scholar 

  2. Fonnum F (1984) Glutamate: a neurotransmitter in mammalian brain. J Neurochem 42(1):1–11

    Article  CAS  PubMed  Google Scholar 

  3. Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65(1):1–105

    Article  CAS  PubMed  Google Scholar 

  4. Rothstein JD, Martin L, Levey AI, Dykes-Hoberg M, Jin L, Wu D, Nash N, Kuncl RW (1994) Localization of neuronal and glial glutamate transporters. Neuron 13(3):713–725

    Article  CAS  PubMed  Google Scholar 

  5. Tanaka K, Watase K, Manabe T, Yamada K, Watanabe M, Takahashi K, Iwama H, Nishikawa T, Ichihara N, Kikuchi T, Okuyama S, Kawashima N, Hori S, Takimoto M, Wada K (1997) Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 276(5319):1699–1702

    Article  CAS  PubMed  Google Scholar 

  6. Aubert A, Costalat R, Magistretti PJ, Pellerin L (2005) Brain lactate kinetics: modeling evidence for neuronal lactate uptake upon activation. Proc Natl Acad Sci USA 102(45):16448–16453. doi:10.1073/pnas.0505427102

    Article  CAS  PubMed  Google Scholar 

  7. Henneberger C, Papouin T, Oliet SH, Rusakov DA (2010) Long-term potentiation depends on release of d-serine from astrocytes. Nature 463(7278):232–236. doi:10.1038/nature08673

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Nedergaard M, Verkhratsky A (2012) Artifact versus reality–how astrocytes contribute to synaptic events. Glia 60(7):1013–1023. doi:10.1002/glia.22288

    Article  PubMed Central  PubMed  Google Scholar 

  9. Grosche J, Matyash V, Moller T, Verkhratsky A, Reichenbach A, Kettenmann H (1999) Microdomains for neuron-glia interaction: parallel fiber signaling to Bergmann glial cells. Nat Neurosci 2(2):139–143. doi:10.1038/5692

    Article  CAS  PubMed  Google Scholar 

  10. Lopez-Bayghen E, Rosas S, Castelan F, Ortega A (2007) Cerebellar Bergmann glia: an important model to study neuron–glia interactions. Neuron Glia Biol 3(2):155–167. doi:10.1017/S1740925X0700066X

    Article  PubMed  Google Scholar 

  11. Aguirre A, Lopez T, Lopez-Bayghen E, Ortega A (2000) Glutamate regulates kainate-binding protein expression in cultured chick Bergmann glia through an activator protein-1 binding site. J Biol Chem 275(50):39246–39253. doi:10.1074/jbc.M002847200

    Article  CAS  PubMed  Google Scholar 

  12. Cruz-Solis I, Zepeda RC, Ortiz S, Aguilera J, Lopez-Bayghen E, Ortega A (2009) Glutamate-dependent transcriptional control in Bergmann glia: sox10 as a repressor. J Neurochem 109(3):899–910

    Article  CAS  PubMed  Google Scholar 

  13. Lopez-Bayghen E, Ortega A (2004) Glutamate-dependent transcriptional regulation of GLAST: role of PKC. J Neurochem 91(1):200–209. doi:10.1111/j.1471-4159.2004.02706.x

    Article  CAS  PubMed  Google Scholar 

  14. Mendez JA, Lopez-Bayghen E, Ortega A (2005) Glutamate activation of Oct-2 in cultured chick Bergmann glia cells: involvement of NFkappaB. J Neurosci Res 81(1):21–30. doi:10.1002/jnr.20519

    Article  CAS  PubMed  Google Scholar 

  15. Barrera I, Flores-Mendez M, Hernandez-Kelly LC, Cid L, Huerta M, Zinker S, Lopez-Bayghen E, Aguilera J, Ortega A (2010) Glutamate regulates eEF1A phosphorylation and ribosomal transit time in Bergmann glial cells. Neurochem Int 57(7):795–803. doi:10.1016/j.neuint.2010.08.017

    Article  CAS  PubMed  Google Scholar 

  16. Barrera I, Hernandez-Kelly LC, Castelan F, Ortega A (2008) Glutamate-dependent elongation factor-2 phosphorylation in Bergmann glial cells. Neurochem Int 52(6):1167–1175. doi:10.1016/j.neuint.2007.12.006

    Article  CAS  PubMed  Google Scholar 

  17. Flores-Mendez MA, Martinez-Lozada Z, Monroy HC, Hernandez-Kelly LC, Barrera I, Ortega A (2013) Glutamate-dependent translational control in cultured Bergmann glia cells: eif2alpha phosphorylation. Neurochem Res 38(7):1324–1332. doi:10.1007/s11064-013-1024-1

    Article  CAS  PubMed  Google Scholar 

  18. Gonzalez-Mejia ME, Morales M, Hernandez-Kelly LC, Zepeda RC, Bernabe A, Ortega A (2006) Glutamate-dependent translational regulation in cultured Bergmann glia cells: involvement of p70S6 K. J Neurosci 141(3):1389–1398. doi:10.1016/j.neuroscience.2006.04.076

    CAS  Google Scholar 

  19. Martinez-Lozada Z, Hernandez-Kelly LC, Aguilera J, Lopez-Bayghen E, Ortega A (2011) Signaling through EAAT-1/GLAST in cultured Bergmann glia cells. Neurochem Int 59(6):871–879. doi:10.1016/j.neuint.2011.07.015

    Article  CAS  PubMed  Google Scholar 

  20. Zepeda RC, Barrera I, Castelan F, Suarez-Pozos E, Melgarejo Y, Gonzalez-Mejia E, Hernandez-Kelly LC, Lopez-Bayghen E, Aguilera J, Ortega A (2009) Glutamate-dependent phosphorylation of the mammalian target of rapamycin (mTOR) in Bergmann glial cells. Neurochem Int 55(5):282–287. doi:10.1016/j.neuint.2009.03.011

    Article  CAS  PubMed  Google Scholar 

  21. Millan A, Aguilar P, Mendez JA, Arias-Montano JA, Ortega A (2001) Glutamate activates PP125(FAK) through AMPA/kainate receptors in Bergmann glia. J Neurosci Res 66(4):723–729

    Article  CAS  PubMed  Google Scholar 

  22. Millan A, Arias-Montano JA, Mendez JA, Hernandez-Kelly LC, Ortega A (2004) Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors signaling complexes in Bergmann glia. J Neurosci Res 78(1):56–63. doi:10.1002/jnr.20237

    Article  CAS  PubMed  Google Scholar 

  23. Morales M, Gonzalez-Mejia ME, Bernabe A, Hernandez-Kelly LC, Ortega A (2006) Glutamate activates protein kinase B (PKB/Akt) through AMPA receptors in cultured Bergmann glia cells. Neurochem Res 31(3):423–429. doi:10.1007/s11064-005-9034-2

    Article  CAS  PubMed  Google Scholar 

  24. Ortega A, Teichberg VI (1990) Phosphorylation of the 49-kDa putative subunit of the chick cerebellar kainate receptor and its regulation by kainatergic ligands. J Biol Chem 265(35):21404–21406

    CAS  PubMed  Google Scholar 

  25. Martinez-Lozada Z, Guillem AM, Flores-Mendez M, Hernandez-Kelly LC, Vela C, Meza E, Zepeda RC, Caba M, Rodriguez A, Ortega A (2013) GLAST/EAAT1-induced glutamine release via SNAT3 in Bergmann glial cells: evidence of a functional and physical coupling. J Neurochem 125(4):545–554. doi:10.1111/jnc.12211

    Article  CAS  PubMed  Google Scholar 

  26. Bak LK, Schousboe A, Waagepetersen HS (2006) The glutamate/GABA-glutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer. J Neurochem 98(3):641–653. doi:10.1111/j.1471-4159.2006.03913.x

    Article  CAS  PubMed  Google Scholar 

  27. Kennedy AJ, Voaden MJ, Marshall J (1974) Glutamate metabolism in the frog retina. Nature 252(5478):50–52

    Article  CAS  PubMed  Google Scholar 

  28. Nadler JV (2012) Plasticity of glutamate synaptic mechanisms. In: Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV (eds) Jasper’s basic mechanisms of the epilepsies. 4th edn., Bethesda (MD)

  29. Bauer DE, Jackson JG, Genda EN, Montoya MM, Yudkoff M, Robinson MB (2012) The glutamate transporter, GLAST, participates in a macromolecular complex that supports glutamate metabolism. Neurochem Int 61(4):566–574. doi:10.1016/j.neuint.2012.01.013

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Gonzalez MI, Ortega A (2000) Regulation of high-affinity glutamate uptake activity in Bergmann glia cells by glutamate. Brain Res 866(1–2):73–81

    Article  CAS  PubMed  Google Scholar 

  31. Munir M, Correale DM, Robinson MB (2000) Substrate-induced up-regulation of Na(+)-dependent glutamate transport activity. Neurochem Int 37(2–3):147–162

    Article  CAS  PubMed  Google Scholar 

  32. Rothstein JD, Dykes-Hoberg M, Pardo CA, Bristol LA, Jin L, Kuncl RW, Kanai Y, Hediger MA, Wang Y, Schielke JP, Welty DF (1996) Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16(3):675–686

    Article  CAS  PubMed  Google Scholar 

  33. Hundal HS, Taylor PM (2009) Amino acid transceptors: gate keepers of nutrient exchange and regulators of nutrient signaling. Am J Physiol Endocrinol Metabol 296(4):E603–E613. doi:10.1152/ajpendo.9 1002.2008

    Article  CAS  Google Scholar 

  34. Kriel J, Haesendonckx S, Rubio-Texeira M, Van Zeebroeck G, Thevelein JM (2011) From transporter to transceptor: signaling from transporters provokes re-evaluation of complex trafficking and regulatory controls: endocytic internalization and intracellular trafficking of nutrient transceptors may, at least in part, be governed by their signaling function. BioEssays 33(11):870–879. doi:10.1002/bies.201100100

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Rosas S, Vargas MA, Lopez-Bayghen E, Ortega A (2007) Glutamate-dependent transcriptional regulation of GLAST/EAAT1: a role for YY1. J Neurochem 101(4):1134–1144. doi:10.1111/j.1471-4159.2007.04517.x

    Article  CAS  PubMed  Google Scholar 

  36. Ortega A, Eshhar N, Teichberg VI (1991) Properties of kainate receptor/channels on cultured Bergmann glia. Neuroscience 41(2–3):335–349

    Article  CAS  PubMed  Google Scholar 

  37. Aguirre G, Rosas S, Lopez-Bayghen E, Ortega A (2008) Valproate-dependent transcriptional regulation of GLAST/EAAT1 expression: involvement of Ying-Yang 1. Neurochem Int 52(7):1322–1331. doi:10.1016/j.neuint.2008.01.015

    Article  CAS  PubMed  Google Scholar 

  38. Lopez-Bayghen E, Aguirre A, Ortega A (2003) Transcriptional regulation through glutamate receptors: involvement of tyrosine kinases. J Neurosci Res 74(5):717–725. doi:10.1002/jnr.10807

    Article  CAS  PubMed  Google Scholar 

  39. Ruiz M, Ortega A (1995) Characterization of an Na(+)-dependent glutamate/aspartate transporter from cultured Bergmann glia. NeuroReport 6(15):2041–2044

    Article  CAS  PubMed  Google Scholar 

  40. Keinanen K, Wisden W, Sommer B, Werner P, Herb A, Verdoorn TA, Sakmann B, Seeburg PH (1990) A family of AMPA-selective glutamate receptors. Science 249(4968):556–560

    Article  CAS  PubMed  Google Scholar 

  41. Coulter DA, Eid T (2012) Astrocytic regulation of glutamate homeostasis in epilepsy. Glia 60(8):1215–1226. doi:10.1002/glia.22341

    Article  PubMed Central  PubMed  Google Scholar 

  42. Lopez-Bayghen E, Ortega A (2011) Glial glutamate transporters: new actors in brain signaling. IUBMB Life 63(10):816–823. doi:10.1002/iub.536

    Article  CAS  PubMed  Google Scholar 

  43. Lopez-Colome AM, Martinez-Lozada Z, Guillem AM, Lopez E, Ortega A (2012) Glutamate transporter-dependent mTOR phosphorylation in Muller glia cells. ASN Neuro. doi:10.1042/AN20120022

    PubMed  Google Scholar 

  44. Gadea A, Lopez E, Lopez-Colome AM (2004) Glutamate-induced inhibition of d-aspartate uptake in Muller glia from the retina. Neurochem Res 29(1):295–304

    Article  CAS  PubMed  Google Scholar 

  45. Bringmann A, Grosche A, Pannicke T, Reichenbach A (2013) GABA and glutamate uptake and metabolism in retinal glial (Muller) cells. Front Endocrinol 4:48. doi:10.3389/fendo.2013.00048

    Article  CAS  Google Scholar 

  46. Sitcheran R, Comb WC, Cogswell PC, Baldwin AS (2008) Essential role for epidermal growth factor receptor in glutamate receptor signaling to NF-kappaB. Mol Cell Biol 28(16):5061–5070. doi:10.1128/MCB.00578-08

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Chaudhry FA, Lehre KP, van Lookeren Campagne M, Ottersen OP, Danbolt NC, Storm-Mathisen J (1995) Glutamate transporters in glial plasma membranes: highly differentiated localizations revealed by quantitative ultrastructural immunocytochemistry. Neuron 15(3):711–720

    Article  CAS  PubMed  Google Scholar 

  48. Iino M, Goto K, Kakegawa W, Okado H, Sudo M, Ishiuchi S, Miwa A, Takayasu Y, Saito I, Tsuzuki K, Ozawa S (2001) Glia-synapse interaction through Ca2+-permeable AMPA receptors in Bergmann glia. Science 292(5518):926–929. doi:10.1126/science.1058827

    Article  CAS  PubMed  Google Scholar 

  49. Lopez T, Lopez-Colome AM, Ortega A (1994) AMPA/KA receptor expression in radial glia. NeuroReport 5(4):504–506

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Conacyt-Mexico to A.O. (123625 and 163235). D.M. is supported by Conacyt-Mexico fellowship. The critical input of Prof. Angelina Rodríguez on the design and interpretation of the experiments is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arturo Ortega.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martínez, D., García, L., Aguilera, J. et al. An Acute Glutamate Exposure Induces Long-Term Down Regulation of GLAST/EAAT1 Uptake Activity in Cultured Bergmann Glia Cells. Neurochem Res 39, 142–149 (2014). https://doi.org/10.1007/s11064-013-1198-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-013-1198-6

Keywords

Navigation