Skip to main content
Log in

GLAST Activity is Modified by Acute Manganese Exposure in Bergmann Glial Cells

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Glutamate is the major excitatory amino acid neurotransmitter in the vertebrate brain. It exerts its actions through the activation of specific plasma membrane receptors expressed in neurons and glial cells. Overactivation of glutamate receptors results in neuronal death, known as excitotoxicity. A family of sodium-dependent glutamate transporters enriched in glial cells are responsible of the vast majority of the removal of this amino acid form the synaptic cleft. Therefore, a precise and exquisite regulation of these proteins is required not only for a proper glutamatergic transmission but also for the prevention of an excitotoxic insult. Manganese is a trace element essential as a cofactor for several enzymatic systems, although in high concentrations is involved in the disruption of brain glutamate homeostasis. The molecular mechanisms associated to manganese neurotoxicity have been focused on mitochondrial function, although energy depletion severely compromises the glutamate uptake process. In this context, in this contribution we analyze the effect of manganese exposure in glial glutamate transporters function. To this end, we used the well-established model of chick cerebellar Bergmann glia cultures. A time and dose dependent modulation of [3H]-d-aspartate uptake was found. An increase in the transporter catalytic efficiency, most probably linked to a discrete increase in the affinity of the transporter was detected upon manganese exposure. Interestingly, glucose uptake was reduced by this metal. These results favor the notion of a direct effect of manganese on glial cells, this in turn alters their coupling with neurons and might lead to changes in glutamatergic transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Maj C, Minelli A, Giacopuzzi E et al (2016) The role of metabotropic glutamate receptor genes in schizophrenia. Curr Neuropharmacol 14:540–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mayer ML (2011) Structure and mechanism of glutamate receptor ion channel assembly, activation and modulation. Curr Opin Neurobiol 21:283–290. https://doi.org/10.1016/j.conb.2011.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Borroto-Escuela DO, Tarakanov AO, Brito I, Fuxe K (2018) Glutamate heteroreceptor complexes in the brain. Pharmacol Rep 70:936–950. https://doi.org/10.1016/j.pharep.2018.04.002

    Article  CAS  PubMed  Google Scholar 

  4. Ambrogini P, Torquato P, Bartolini D et al (2019) Excitotoxicity, neuroinflammation and oxidant stress as molecular bases of epileptogenesis and epilepsy-derived neurodegeneration: the role of vitamin E. Biochim Biophys Acta Mol Basis Dis. https://doi.org/10.1016/j.bbadis.2019.01.026

    Article  PubMed  Google Scholar 

  5. Danbolt NC, Furness DN, Zhou Y (2016) Neuronal vs glial glutamate uptake: resolving the conundrum. Neurochem Int 98:29–45. https://doi.org/10.1016/j.neuint.2016.05.009

    Article  CAS  PubMed  Google Scholar 

  6. Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105

    Article  CAS  PubMed  Google Scholar 

  7. Chaudhry FA, Schmitz D, Reimer RJ et al (2002) Glutamine uptake by neurons: interaction of protons with system a transporters. J Neurosci 22:62–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Billups D, Marx M-C, Mela I, Billups B (2013) Inducible presynaptic glutamine transport supports glutamatergic transmission at the calyx of Held synapse. J Neurosci 33:17429–17434. https://doi.org/10.1523/JNEUROSCI.1466-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shank RP, Campbell GL (1984) Glutamine, glutamate, and other possible regulators of alpha-ketoglutarate and malate uptake by synaptic terminals. J Neurochem 42:1162–1169

    Article  CAS  PubMed  Google Scholar 

  10. Martínez-Lozada Z, Guillem AM, Flores-Méndez M et al (2013) GLAST/EAAT1-induced Glutamine release via SNAT3 in Bergmann glial cells: evidence of a functional and physical coupling. J Neurochem 125:545–554. https://doi.org/10.1111/jnc.12211

    Article  CAS  PubMed  Google Scholar 

  11. Marx M-C, Billups D, Billups B (2015) Maintaining the presynaptic glutamate supply for excitatory neurotransmission. J Neurosci Res 93:1031–1044. https://doi.org/10.1002/jnr.23561

    Article  CAS  PubMed  Google Scholar 

  12. Takeda A (2003) Manganese action in brain function. Brain Res Brain Res Rev 41:79–87

    Article  CAS  PubMed  Google Scholar 

  13. Kwakye G, Paoliello M, Mukhopadhyay S et al (2015) Manganese-induced parkinsonism and Parkinson’s disease: shared and distinguishable features. Int J Environ Res Public Health 12:7519–7540. https://doi.org/10.3390/ijerph120707519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Reaney SH, Bench G, Smith DR (2006) Brain accumulation and toxicity of Mn(II) and Mn(III) exposures. Toxicol Sci 93:114–124. https://doi.org/10.1093/toxsci/kfl028

    Article  CAS  PubMed  Google Scholar 

  15. Robison G, Sullivan B, Cannon JR, Pushkar Y (2015) Identification of dopaminergic neurons of the substantia nigra pars compacta as a target of manganese accumulation. Metallomics 7:748–755. https://doi.org/10.1039/c5mt00023h

    Article  CAS  PubMed  Google Scholar 

  16. Wang C, Ma Z, Yan D-Y et al (2018) Alpha-synuclein and calpains disrupt SNARE-mediated synaptic vesicle fusion during manganese exposure in SH-SY5Y cells. Cells 7:258. https://doi.org/10.3390/cells7120258

    Article  CAS  PubMed Central  Google Scholar 

  17. Liu C, Yan D-Y, Tan X et al (2018) Effect of the cross-talk between autophagy and endoplasmic reticulum stress on Mn-induced alpha-synuclein oligomerization. Environ Toxicol 33:315–324. https://doi.org/10.1002/tox.22518

    Article  CAS  PubMed  Google Scholar 

  18. Chen P, Bornhorst J, Aschner M (2018) Manganese metabolism in humans. Front Biosci (Landmark Ed 23:1655–1679.

    Article  CAS  Google Scholar 

  19. Lee E, Karki P, Johnson JJ et al (2017) Manganese control of glutamate transporters’ gene expression. Adv Neurobiol 16:1–12. https://doi.org/10.1007/978-3-319-55769-4_1

    Article  PubMed  PubMed Central  Google Scholar 

  20. Somogyi P, Takagi H, Richards JG, Mohler H (1989) Subcellular localization of benzodiazepine/GABAA receptors in the cerebellum of rat, cat, and monkey using monoclonal antibodies. J Neurosci 9:2197–2209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ortega A, Eshhar N, Teichberg VI (1991) Properties of kainate receptor/channels on cultured Bergmann glia. Neuroscience 41:335–349

    Article  CAS  PubMed  Google Scholar 

  22. Ruiz M, Ortega A (1995) Characterization of an Na(+)-dependent glutamate/aspartate transporter from cultured Bergmann glia. NeuroReport 6:2041–2044

    Article  CAS  PubMed  Google Scholar 

  23. Mendez-Flores OG, Hernández-Kelly LC, Suárez-Pozos E et al (2016) Coupling of glutamate and glucose uptake in cultured Bergmann glial cells. Neurochem Int 98:72–81. https://doi.org/10.1016/j.neuint.2016.05.001

    Article  CAS  PubMed  Google Scholar 

  24. Lee E-SY, Yin Z, Milatovic D et al (2009) Estrogen and tamoxifen protect against Mn-induced toxicity in rat cortical primary cultures of neurons and astrocytes. Toxicol Sci 110:156–167. https://doi.org/10.1093/toxsci/kfp081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Malthankar GV, White BK, Bhushan A et al (2004) Differential lowering by manganese treatment of activities of glycolytic and tricarboxylic acid (TCA) cycle enzymes investigated in neuroblastoma and astrocytoma cells is associated with manganese-induced cell death. Neurochem Res 29:709–717

    Article  CAS  PubMed  Google Scholar 

  26. Kim J, Pajarillo E, Rizor A et al (2019) LRRK2 kinase plays a critical role in manganese-induced inflammation and apoptosis in microglia. PLoS ONE 14:e0210248. https://doi.org/10.1371/journal.pone.0210248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gandhi D, Sivanesan S, Kannan K (2018) Manganese-induced neurotoxicity and alterations in gene expression in human neuroblastoma SH-SY5Y cells. Biol Trace Elem Res 183:245–253. https://doi.org/10.1007/s12011-017-1153-5

    Article  CAS  PubMed  Google Scholar 

  28. Sepúlveda MR, Dresselaers T, Vangheluwe P, Everaerts W (2012) Evaluation of manganese uptake and toxicity in mouse brain during continuous MnCl2 administration using osmotic pumps. Contrast Media Mol Imaging 7(4):426–434. https://doi.org/10.1002/cmmi.1469

    Article  CAS  PubMed  Google Scholar 

  29. Ye Q, Kim J (2015) Effect of olfactory manganese exposure on anxiety-related behavior in a mouse model of iron overload hemochromatosis. Environ Toxicol Pharmacol 40:333–341. https://doi.org/10.1016/j.etap.2015.06.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Karki P, Smith K, Johnson J et al (2014) Role of transcription factor yin yang 1 in manganese-induced reduction of astrocytic glutamate transporters: putative mechanism for manganese-induced neurotoxicity. Neurochem Int 88:53–59. https://doi.org/10.1016/j.neuint.2014.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Karki P, Webb A, Smith K et al (2014) Yin Yang 1 is a repressor of glutamate transporter EAAT2, and it mediates manganese-induced decrease of EAAT2 expression in astrocytes. Mol Cell Biol 34:1280–1289. https://doi.org/10.1128/MCB.01176-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Martínez-Lozada Z, Hernández-Kelly LC, Aguilera J et al (2011) Signaling through EAAT-1/GLAST in cultured Bergmann glia cells. Neurochem Int 59:871–879. https://doi.org/10.1016/j.neuint.2011.07.015

    Article  CAS  PubMed  Google Scholar 

  33. Martinez D, Garcia L, Aguilera J, Ortega A (2014) An acute glutamate exposure induces long-term down regulation of GLAST/EAAT1 uptake activity in cultured Bergmann glia cells. Neurochem Res 39:142–149. https://doi.org/10.1007/s11064-013-1198-6

    Article  CAS  PubMed  Google Scholar 

  34. Northrop DB (1998) On the Meaning of Km and V/K in Enzyme Kinetics. J Chem Educ 75:1153. https://doi.org/10.1021/ed075p1153

    Article  CAS  Google Scholar 

  35. Pellerin L, Magistretti PJ (2012) Sweet sixteen for ANLS. J Cereb Blood Flow Metab 32:1152–1166. https://doi.org/10.1038/jcbfm.2011.149

    Article  CAS  PubMed  Google Scholar 

  36. Broer S, Rahman B, Pellegri G et al (1997) Comparison of lactate transport in astroglial cells and monocarboxylate transporter 1 (MCT 1) expressing Xenopus laevis oocytes. Expression of two different monocarboxylate transporters in astroglial cells and neurons. J Biol Chem 272:30096–30102

    Article  CAS  PubMed  Google Scholar 

  37. Neely MD, Davison CA, Aschner M, Bowman AB (2017) Manganese and rotenone-induced oxidative stress signatures differ in iPSC-derived human dopamine neurons. Toxicol Sci 159:366–379. https://doi.org/10.1093/toxsci/kfx145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shih J-H, Zeng B-Y, Lin P-Y et al (2018) Association between peripheral manganese levels and attention-deficit/hyperactivity disorder: a preliminary meta-analysis. Neuropsychiatr Dis Treat 14:1831–1842. https://doi.org/10.2147/NDT.S165378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sidoryk-Wegrzynowicz M, Aschner M (2013) Manganese toxicity in the central nervous system: the glutamine/glutamate-gamma-aminobutyric acid cycle. J Intern Med 273:466–477. https://doi.org/10.1111/joim.12040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Johnson J, Pajarillo EAB, Taka E et al (2018) Valproate and sodium butyrate attenuate manganese-decreased locomotor activity and astrocytic glutamate transporters expression in mice. Neurotoxicology 64:230–239. https://doi.org/10.1016/j.neuro.2017.06.007

    Article  CAS  PubMed  Google Scholar 

  41. Somogyi P, Tamás G, Lujan R, Buhl EH (1998) Salient features of synaptic organisation in the cerebral cortex. Brain Res Brain Res Rev 26:113–135

    Article  CAS  PubMed  Google Scholar 

  42. Buffo A, Rossi F (2013) Origin, lineage and function of cerebellar glia. Prog Neurobiol 109:42–63. https://doi.org/10.1016/j.pneurobio.2013.08.001

    Article  PubMed  Google Scholar 

  43. Gegelashvili G, Civenni G, Racagni G et al (1996) Glutamate receptor agonists up-regulate glutamate transporter GLAST in astrocytes. NeuroReport 8:261–265

    Article  CAS  PubMed  Google Scholar 

  44. Bernabe A, Mendez JA, Hernandez-Kelly LCR, Ortega A (2003) Regulation of the Na+-dependent glutamate/aspartate transporter in rodent cerebellar astrocytes. Neurochem Res 28:1843–1849

    Article  CAS  PubMed  Google Scholar 

  45. Ramirez-Sotelo G, Lopez-Bayghen E, Hernandez-Kelly LCR et al (2007) Regulation of the mouse Na+-dependent glutamate/aspartate transporter GLAST: putative role of an AP-1 DNA binding site. Neurochem Res 32:73–80. https://doi.org/10.1007/s11064-006-9227-3

    Article  CAS  PubMed  Google Scholar 

  46. Martinez-Lozada Z, Ortega A (2015) Glutamatergic transmission: a matter of three. Neural Plast 2015:787396. https://doi.org/10.1155/2015/787396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Koshland DE (2002) The application and usefulness of the ratio kcat/KM. Bioorg Chem 30:211–213. https://doi.org/10.1006/BIOO.2002.1246

    Article  CAS  PubMed  Google Scholar 

  48. Miyazaki T, Yamasaki M, Hashimoto K et al (2017) Glutamate transporter GLAST controls synaptic wrapping by Bergmann glia and ensures proper wiring of Purkinje cells. Proc Natl Acad Sci USA 114:7438–7443. https://doi.org/10.1073/pnas.1617330114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

ME and JSV were supported by Conacyt-Mexico PhD scholarships. This work was funded by Conacyt-Mexico (255087) Grant to AO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arturo Ortega.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Special issue in honor of Prof In honor of Professor Michael Robinson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Escalante, M., Soto-Verdugo, J., Hernández-Kelly, L.C. et al. GLAST Activity is Modified by Acute Manganese Exposure in Bergmann Glial Cells. Neurochem Res 45, 1365–1374 (2020). https://doi.org/10.1007/s11064-019-02848-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-019-02848-8

Keywords

Navigation